小模型大突破!北航&&清华 | 提出TinyLLaVA多模态框架,性能可媲美大模型

来源: AINLPer公众号(每日干货分享!!)
编辑: ShuYini
校稿: ShuYini
时间: 2024-2-28

引言

当前LLMs在NLP领域取得了显著的进展,为了能够继续提升模型对多模态信息的理解,研究者们开始了多模型模型的研究,并取得了显著的成果,例如:GPT-4图文理解、以及Sora视频生成,但是此类模型高昂的计算成本限制了其广泛应用。

为此,本文提出了TinyLLaVA框架,旨在提供一个统一的视角来设计和分析小规模LMMs。实验表明通过优化数据质量和训练策略,小规模模型在性能上可与大型模型相媲美。论文获取方式,GZ: AINLPer公众号,,回复:TinyLLaVA

背景介绍

近年来,随着大型语言模型(LLMs)如GPT-3和BERT在自然语言处理领域的成功,研究者们受到启发,开始探索将视觉感知与LLMs结合的LMMs。这些模型通过视觉和语言的联合学习,旨在提升对多模态信息的理解能力。例如,Flamingo模型就是一个拥有80亿参数的LMM,它在视觉-语言少样本学习任务上展现出了卓越的性能。

然而,尽管模型规模的扩大显著提高了性能,但训练如此庞大的模型需要昂贵的计算资源,而且模型的大规模可能导致训练和推理预算不可承受。这限制了研究的可及性,尤其是对于资源有限的学术社区。为了解决这一问题,研究者们开始关注小规模模型,这些模型在保持合理计算预算的同时,也能达到令人印象深刻的性能。例如,Phi-2、TinyLlama和StableLM2等小规模LLMs在保持较小参数规模的同时,也展现出了强大的能力。

LMMs的设计空间非常广泛,包括不同的视觉编码器、连接模块、语言模型、训练数据和训练策略。这种多样性导致了设计LMMs的复杂性,并增加了理解现有方法空间的难度。为了应对这一挑战,本文提出了TinyLLaVA框架,提供了一个统一的视角来设计和分析小规模LMMs。

TinyLLaVA框架

TinyLLaVA框架的结构设计旨在有效地结合视觉和语言处理能力,以实现对多模态数据的理解和生成。其框架如下图所示:
如上图所示,TinyLLaVA框架主要由三部分组成:小规模语言模型(LLM)、视觉编码器和连接器。其中:

小规模LLM是框架的核心,负责处理和生成文本信息。小规模LLM可以选用TinyLlama、StableLM-2、Phi-2等,它们能够在保持较小参数规模的同时处理复杂的语言任务。

视觉编码器的作用是将输入的图像转换为一系列视觉特征。在TinyLLaVA框架中,本文使用CLIP和SigLIP作为视觉编码器,这些编码器能够提取图像中的关键视觉信息。

连接器是视觉编码器和LLM之间的桥梁,它负责将视觉特征映射到文本嵌入空间。这样,LLM就能够理解和生成与视觉内容相关联的文本。

TinyLLaVA训练流程

TinyLLaVA的训练流程是一个分阶段的过程,旨在优化模型以处理多模态数据(即图像和文本)。这个流程包括预训练和监督微调两个主要阶段,每个阶段都有其特定的目标和方法。以下是详细的训练流程:

预训练阶段-目标在预训练阶段,主要目标是使模型能够更好地对齐视觉和文本信息。这通过使用图像-标题(image-caption)对来实现,这些数据对包含了图像及其对应的描述。

预训练阶段-方法:给定一个图像 X X X和目标响应 Y a Y_a Ya(描述图像的文本序列),模型计算生成 Y a Y_a Ya的条件概率,并将其最大化作为训练目标。这个过程中,连接器 P ϕ P_ϕ Pϕ和LLM F θ F_θ Fθ的参数都会更新来优化模型性能,而预训练通常是冻结其他部分的模型参数,只更新连接器。

监督微调阶段-目标:在监督微调阶段,模型使用原始的多轮对话形式的图像-文本对 ( X , Y ) (X, Y) X,Y,其中Y包含了人类指令 ( Y q t ) (Y^t_q) Yqt和相应的助手响应 ( Y a t ) (Y^t_a) Yat。这个阶段的目标是优化助手响应的自回归概率,以提高模型在特定任务上的表现。

监督微调阶段-方法:在这个阶段,模型调整连接器 P ϕ P_ϕ Pϕ、LLM F θ F_θ Fθ和视觉编码器 V φ V_φ Vφ的参数。与预训练不同,监督微调通常涉及对所有或部分模型参数的调整。这个过程通过最大化助手响应的对数似然来实现,其中只考虑助手响应的部分(即 Y a t Y^t_a Yat)。

在整个训练流程中,TinyLLaVA框架能够让模型的不同部分进行部分学习参数的调整,这有助于在小规模LLM的情况下更好地对齐视觉和文本信息。此外,训练流程中的不同阶段可能涉及不同的学习率和批量大小,以适应不同的训练需求。

通过这种分阶段的训练方法,TinyLLaVA能够在保持计算效率的同时,实现对多模态数据的深入理解和有效处理。这种训练策略为小规模LMMs的研究提供了一种有效的途径,使得这些模型能够在资源有限的情况下,达到与大型模型相媲美的性能。

实验结果

模型在多个图像问答(VQA)和综合性能评估(如POPE、MM-Vet等)基准上进行评估。结果表明,通过优化训练策略和数据质量,小规模LMMs能够实现与大型模型相当的性能。特别是,TinyLLaVA-3.1B模型在多个任务上超越了现有的7B模型。

  • 17
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值