【大模型应用开发 动手做AI Agent】思维树

【大模型应用开发 动手做AI Agent】思维树

1.背景介绍

在人工智能领域,AI Agent(人工智能代理)已经成为一个热门话题。AI Agent不仅在学术研究中占据重要地位,而且在实际应用中也展现出巨大的潜力。无论是自动驾驶、智能客服,还是金融分析、医疗诊断,AI Agent都在不断改变我们的生活和工作方式。本文将深入探讨大模型应用开发中的AI Agent,帮助读者理解其核心概念、算法原理、数学模型、实际应用以及未来发展趋势。

2.核心概念与联系

2.1 AI Agent的定义

AI Agent是指能够自主感知环境、做出决策并执行行动的智能系统。它通常由感知模块、决策模块和执行模块组成。

2.2 大模型的定义

大模型是指具有大量参数和复杂结构的深度学习模型,如GPT-3、BERT等。这些模型通过大规模数据训练,能够在多种任务中表现出色。

2.3 AI Agent与大模型的联系

大模型为AI Agent提供了强大的感知和决策能力,使其能够在复杂环境中执行任务。通过结合大模型,AI Agent可以实现更高的智能化和自动化。

3.核心算法原理具体操作

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值