实时目标跟踪类论文汇总

2017

SIMPLE ONLINE AND REALTIME TRACKING

code: https://paperswithcode.com/paper/simple-online-and-realtime-tracking
摘要: 本文探讨了一种实用的多对象跟踪方法,其主要重点是关联对象的更有效的在线和实时应用。为此,检测质量被确定为影响跟踪性能的一个关键因素,其中改变检测器可以提高跟踪高达18.9%。尽管只使用了一个熟悉的技术的基本组合,如卡尔曼滤波器和匈牙利算法的跟踪组件,这种方法实现了与最先进的在线跟踪器相当的精度。此外,由于我们的跟踪方法的简单性,跟踪器的更新速度为260 Hz,比其他最先进的跟踪器快20倍以上。
在这里插入图片描述

2022

Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking

code: https://paperswithcode.com/paper/observation-centric-sort-rethinking-sort-for
摘要: 基于卡尔曼滤波器(KF)的多目标跟踪(MOT)方法假设目标呈线性移动。虽然这种假设对于非常短的闭塞时间是可以接受的,但对长时间运动的线性估计可能是非常不准确的。此外,当没有测量值可以更新卡尔曼滤波参数时,标准的约定是信任先验状态估计来进行后验更新。这导致了在一段闭塞期间错误的积累。在实际应用中,该误差导致了显著的运动方向差异。在这项工作中,我们证明了一个基本的卡尔曼滤波器仍然可以获得最先进的跟踪性能,如果采取适当的注意来修复在遮挡期间积累的噪声。我们不仅仅依赖于线性状态估计(即以估计为中心的方法),而是使用对象观测(即目标检测器的测量)来计算遮挡周期内的虚拟轨迹,以固定滤波器参数的误差积累。这允许更多的时间步长来纠正在遮挡期间积累的错误。我们将我们的方法命名为以观察为中心的SORT(OC-SORT)。它仍然是简单的、在线的和实时的,但提高了在遮挡和非线性运动时的鲁棒性。给定现成的检测作为输入,OC-SORT在单个CPU上以700+ FPS运行。它在多个数据集上实现了最先进的技术,包括MOT17、MOT20、KITTI、头部跟踪,特别是物体运动高度非线性的舞蹈跟踪。
在这里插入图片描述

BoT-SORT: Robust Associations Multi-Pedestrian Tracking

code: https://paperswithcode.com/paper/bot-sort-robust-associations-multi-pedestrian
摘要:多对象跟踪(MOT)的目标是检测和跟踪一个场景中的所有对象,同时为每个对象保持一个唯一的标识符。在本文中,我们提出了一种新的鲁棒的最先进的跟踪器,它可以结合运动和外观信息的优点,以及相机运动补偿,和一个更精确的卡尔曼滤波状态向量。我们的新跟踪器BoT-SORT和BoT-SORT-ReID在MOT17和MOT20测试集的MOT挑战[29,11]数据集上,在所有主要的MOT指标: MOTA、IDF1和HOTA方面排名第一。对于MOT17: 80.5 MOTA,实现了80.2 IDF1和65.0 HOTA。

在这里插入图片描述

2024

Hybrid-SORT: Weak Cues Matter for Online Multi-Object Tracking

code: https://paperswithcode.com/paper/hybrid-sort-weak-cues-matter-for-online-multi
摘要: 多对象跟踪(MOT)的目标是检测和关联帧间所有期望的对象。大多数方法都是通过显式或隐式地利用强线索(即空间和外观信息)来完成任务的,这些线索表现出强大的实例级辨别能力。然而,当物体发生遮挡和聚类时,由于物体之间的高度重叠,空间信息和外观信息将同时变得模糊。在本文中,我们证明了通过合并弱线索来补偿强线索,可以有效地解决这一长期存在的挑战。随着速度方向的变化,我们引入了置信度和高度状态作为潜在的弱线索。由于具有优越的性能,我们的方法仍然保持了简单、在线和实时(SORT)的特性。此外,我们的方法以即插即用和无训练的方式对不同的跟踪器和场景显示了很强的泛化。当将我们的方法应用于5个不同的具有代表性的跟踪器时,可以观察到显著和一致的改进。此外,通过强线索和弱线索,我们的方法Hybrid-SORT在不同的基准上取得了优越的性能,包括MOT17、MOT20、MOT20,特别是在舞蹈跟踪中,在复杂的运动中经常发生交互和严重的阻塞。
在这里插入图片描述

UCMCTrack: Multi-Object Tracking with Uniform Camera Motion Compensation

code: https://paperswithcode.com/paper/ucmctrack-multi-object-tracking-with-uniform
摘要: 视频序列中的多目标跟踪(MOT)仍然是一项具有挑战性的任务,特别是在有显著的摄像机运动的场景中。这是因为目标可以在图像平面上大量漂移,导致错误的跟踪结果。解决这些挑战通常需要补充的外观线索或相机运动补偿(CMC)。虽然这些策略是有效的,但它们也引入了相当大的计算负担,对实时MOT提出了挑战。为此,我们引入了UCMCTrack,一种新的基于运动模型的具有鲁棒性的相机运动跟踪器。与传统的逐帧计算补偿参数的CMC不同,UCMCTrack在整个视频序列中始终应用相同的补偿参数。它在地平面上采用卡尔曼滤波器,并引入映射马氏距离(MMD)作为传统的联合交叉点(IoU)距离测量的替代方法。通过利用地面上的投影概率分布,我们的方法有效地捕捉运动模式,并熟练地管理由同源投影引入的不确定性。值得注意的是,UCMCTrack,仅仅依靠运动线索,在各种具有挑战性的数据集上实现了最先进的性能,包括MOT17、MOT20、DanceTrack和KITTI。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点PY

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值