介绍
DarkLabel 是一个用于多目标跟踪 (MOT) 数据集制作的工具,主要用于标注视频中的目标,并为后续的跟踪算法提供高质量的数据。它的功能和特点包括:
-
易用性:DarkLabel 提供了用户友好的界面,使得标注过程更加直观和高效。用户可以轻松地加载视频,进行目标标注和跟踪。
-
多目标标注:支持同时标注多个目标,用户可以为每个目标分配唯一的标识符,这对于多目标跟踪任务至关重要。
-
动态调整:用户可以根据视频内容的变化,动态调整标注框的位置和大小,以适应目标的运动和变化。
-
输出格式:DarkLabel 支持多种输出格式,以便与不同的深度学习框架和跟踪算法兼容,方便后续的数据处理和模型训练。
-
自定义功能:用户可以根据需要自定义标注任务,例如选择特定的目标类别或设置标注规则。
通过使用 DarkLabel,研究人员和开发者可以快速构建高质量的多目标跟踪数据集,从而推动相关算法的发展和应用。
DarkLabel安装
https://github.com/darkpgmr/DarkLabel
自定义数据标注格式
编辑darklabel.yml
format9: # MOT (predefined format]
fixed_filetype: 0 # if specified as true, save setting isn't changeable in GUI
data_fmt: [fn, id, x1, y1, w, h, c=-1, c=-1, c=-1]
gt_file_ext: "txt" # if not specified, default setting is used
gt_merged: 1 # if not specified, default setting is used
classes_set: "coco_classes" # if not specified, default setting is used
name: "MOT2" # if not specified, "[fmt%d] $data_fmt" is used as default format name
加载视频
常用的操作指令
shift+左键检测框:移动检测框的位置,调整检测框的大小。
shift+双击左键检测框:编辑检测框的ID
shift+右键检测框:删除检测框