欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • HY29F080T-70图
  • 深圳德田科技有限公司

     该会员已使用本站7年以上
  • HY29F080T-70
  • 数量
  • 厂家新年份 
  • 封装9600 
  • 批号 
  • 原装正品现货,可出样品!!!
  • QQ:229754250QQ:229754250 复制
  • 0755-83254070 QQ:229754250
  • HY29F080T-90图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • HY29F080T-90
  • 数量65000 
  • 厂家HYNIX 
  • 封装BGA 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • HY29F080T-12图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • HY29F080T-12
  • 数量6800 
  • 厂家HYNIX(海力士) 
  • 封装TSSOP40 
  • 批号24+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • HY29F080T-90图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • HY29F080T-90
  • 数量3918 
  • 厂家HYNIX 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • HY29F080T-90图
  • 集好芯城

     该会员已使用本站13年以上
  • HY29F080T-90
  • 数量18491 
  • 厂家HYUNDAI 
  • 封装TSSOP40 
  • 批号最新批次 
  • 原装原厂 现货现卖
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • HY29F080T-70图
  • 首天国际(深圳)集团有限公司

     该会员已使用本站17年以上
  • HY29F080T-70
  • 数量5000 
  • 厂家HYNIX 
  • 封装原厂封装 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 0755-82807088 QQ:528164397QQ:1318502189
  • HY29F080T-90EI图
  • 北京中其伟业科技有限公司

     该会员已使用本站16年以上
  • HY29F080T-90EI
  • 数量5650 
  • 厂家 
  • 封装 
  • 批号16+ 
  • 特价,原装正品,绝对公司现货库存,原装特价!
  • QQ:2880824479QQ:2880824479 复制
  • 010-62104891 QQ:2880824479
  • HY29F080T-90图
  • 深圳市富科达科技有限公司

     该会员已使用本站13年以上
  • HY29F080T-90
  • 数量28998 
  • 厂家HYNIX 
  • 封装TSOP 
  • 批号2020+ 
  • 全新原装进口现货特价热卖,长期供应."
  • QQ:1220223788QQ:1220223788 复制
    QQ:1327510916QQ:1327510916 复制
  • 86-0755-28767101 QQ:1220223788QQ:1327510916
  • HY29F080TT-90图
  • 北京首天国际有限公司

     该会员已使用本站16年以上
  • HY29F080TT-90
  • 数量2100 
  • 厂家HY 
  • 封装TSOP  
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:528164397QQ:528164397 复制
    QQ:1318502189QQ:1318502189 复制
  • 010-62565447 QQ:528164397QQ:1318502189
  • HY29F080T-90图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • HY29F080T-90
  • 数量
  • 厂家 
  • 封装真实库存百分百进口原装正品 
  • 批号 
  • 普通
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414
  • HY29F080T-90图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • HY29F080T-90
  • 数量5000 
  • 厂家Hyundai 
  • 封装原厂封装 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • HY29F080T-70图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • HY29F080T-70
  • 数量2400 
  • 厂家HY 
  • 封装代理 
  • 批号2021+ 
  • 原装假一赔十!可提供正规渠道证明!
  • QQ:3003818780QQ:3003818780 复制
    QQ:3003819484QQ:3003819484 复制
  • 755-83950019 QQ:3003818780QQ:3003819484
  • HY29F080T-70图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • HY29F080T-70
  • 数量865000 
  • 厂家HY 
  • 封装原厂封装 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • HY29F080T-90图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • HY29F080T-90
  • 数量5000 
  • 厂家
  • 封装HYUNDAI 
  • 批号16+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62106431 QQ:857273081QQ:1594462451
  • HY29F080T-70图
  • 深圳市华斯顿电子科技有限公司

     该会员已使用本站16年以上
  • HY29F080T-70
  • 数量14766 
  • 厂家HYUNDAI 
  • 封装TSOP 
  • 批号2023+ 
  • 绝对原装正品全新进口深圳现货
  • QQ:1002316308QQ:1002316308 复制
    QQ:515102657QQ:515102657 复制
  • 深圳分公司0755-83777708“进口原装正品专供” QQ:1002316308QQ:515102657
  • HY29F080T-90图
  • 深圳市欧立现代科技有限公司

     该会员已使用本站12年以上
  • HY29F080T-90
  • 数量5321 
  • 厂家HY 
  • 封装TSSOP 
  • 批号24+ 
  • 全新原装现货,欢迎询购!
  • QQ:1950791264QQ:1950791264 复制
    QQ:221698708QQ:221698708 复制
  • 0755-83222787 QQ:1950791264QQ:221698708
  • HY29F080T-90图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • HY29F080T-90
  • 数量925 
  • 厂家HYNIX 
  • 封装BGA 
  • 批号24+ 
  • 假一罚万,全新原装库存现货,可长期订货
  • QQ:800888908QQ:800888908 复制
  • 755-83950019 QQ:800888908
  • HY29F080T90R图
  • 深圳市赛尔通科技有限公司

     该会员已使用本站12年以上
  • HY29F080T90R
  • 数量26540 
  • 厂家HYNIX 
  • 封装N/K 
  • 批号NEW 
  • █★全新原装现货 可开17%增值税票
  • QQ:1134344845QQ:1134344845 复制
    QQ:847984313QQ:847984313 复制
  • 86-0755-83536093 QQ:1134344845QQ:847984313
  • HY29F080T-70图
  • 上海熠富电子科技有限公司

     该会员已使用本站15年以上
  • HY29F080T-70
  • 数量5000 
  • 厂家HYUNDAI 
  • 封装N/A 
  • 批号2024 
  • 上海原装现货库存,欢迎查询!
  • QQ:2719079875QQ:2719079875 复制
    QQ:2300949663QQ:2300949663 复制
  • 15821228847 QQ:2719079875QQ:2300949663
  • HY29F080T-70图
  • HECC GROUP CO.,LIMITED

     该会员已使用本站17年以上
  • HY29F080T-70
  • 数量2400 
  • 厂家HY 
  • 封装代理 
  • 批号24+ 
  • 原装假一赔十!可提供正规渠道证明!
  • QQ:3003818780QQ:3003818780 复制
    QQ:3003819484QQ:3003819484 复制
  • 0755-83950895 QQ:3003818780QQ:3003819484
  • HY29F080T-70图
  • 深圳市意好科技有限公司

     该会员已使用本站15年以上
  • HY29F080T-70
  • 数量6100 
  • 厂家HY 
  • 封装原厂 
  • 批号24+ 
  • 中华地区销售
  • QQ:2853107358QQ:2853107358 复制
    QQ:2853107357QQ:2853107357 复制
  • 0755-88608316 QQ:2853107358QQ:2853107357
  • HY29F080T-90图
  • 深圳市宏世佳电子科技有限公司

     该会员已使用本站13年以上
  • HY29F080T-90
  • 数量3565 
  • 厂家HYNIX 
  • 封装TSSOP 
  • 批号2023+ 
  • 全新原厂原装产品、公司现货销售
  • QQ:2881894392QQ:2881894392 复制
    QQ:2881894393QQ:2881894393 复制
  • 0755- QQ:2881894392QQ:2881894393
  • HY29F080T-90图
  • 深圳市宗天技术开发有限公司

     该会员已使用本站10年以上
  • HY29F080T-90
  • 数量673 
  • 厂家HYNIX/海力士 
  • 封装TSSOP40 
  • 批号21+ 
  • 宗天技术 原装现货/假一赔十
  • QQ:444961496QQ:444961496 复制
    QQ:2824256784QQ:2824256784 复制
  • 0755-88601327 QQ:444961496QQ:2824256784
  • HY29F080T-70图
  • 深圳市励创源科技有限公司

     该会员已使用本站2年以上
  • HY29F080T-70
  • 数量35600 
  • 厂家HYUNDAI 
  • 封装TSOP 
  • 批号21+ 
  • 诚信经营,原装现货,假一赔十,欢迎咨询15323859243
  • QQ:815442201QQ:815442201 复制
    QQ:483601579QQ:483601579 复制
  • -0755-82711370 QQ:815442201QQ:483601579
  • HY29F080T-90图
  • 上海意淼电子科技有限公司

     该会员已使用本站14年以上
  • HY29F080T-90
  • 数量20000 
  • 厂家HY 
  • 封装TSOP40 
  • 批号23+ 
  • 原装现货热卖!请联系吴先生 13681678667
  • QQ:617677003QQ:617677003 复制
  • 15618836863 QQ:617677003
  • HY29F080T-90图
  • 上海磐岳电子有限公司

     该会员已使用本站11年以上
  • HY29F080T-90
  • 数量5800 
  • 厂家HYNIX 
  • 封装TSSOP40 
  • 批号2024+ 
  • 全新原装现货,杜绝假货。
  • QQ:3003653665QQ:3003653665 复制
    QQ:1325513291QQ:1325513291 复制
  • 021-60341766 QQ:3003653665QQ:1325513291
  • HY29F080T-12图
  • 上海金庆电子技术有限公司

     该会员已使用本站15年以上
  • HY29F080T-12
  • 数量3060 
  • 厂家HYUN 
  • 封装 
  • 批号新 
  • 全新原装 货期两周
  • QQ:1484215649QQ:1484215649 复制
    QQ:729272152QQ:729272152 复制
  • 021-51872561 QQ:1484215649QQ:729272152
  • HY29F080T-12图
  • 长荣电子

     该会员已使用本站14年以上
  • HY29F080T-12
  • 数量49 
  • 厂家 
  • 封装TSOP 
  • 批号09+ 
  • 现货
  • QQ:172370262QQ:172370262 复制
  • 754-4457500 QQ:172370262
  • HY29F080T90R图
  • 深圳市雅维特电子有限公司

     该会员已使用本站15年以上
  • HY29F080T90R
  • 数量15000 
  • 厂家HYNIX 
  • 封装深圳原装现货0755-83975781 
  • 批号N/A 
  • QQ:767621813QQ:767621813 复制
    QQ:1152937841QQ:1152937841 复制
  • 0755-83975781 QQ:767621813QQ:1152937841
  • HY29F080T-90图
  • 深圳市亿智腾科技有限公司

     该会员已使用本站8年以上
  • HY29F080T-90
  • 数量16680 
  • 厂家HYUNDAI 
  • 封装TSOP 
  • 批号16+ 
  • 假一赔十★全新原装现货★★特价供应★工厂客户可放款
  • QQ:799387964QQ:799387964 复制
    QQ:2777237833QQ:2777237833 复制
  • 0755-82566711 QQ:799387964QQ:2777237833
  • HY29F080T-90图
  • 深圳市卓越微芯电子有限公司

     该会员已使用本站12年以上
  • HY29F080T-90
  • 数量5500 
  • 厂家Hynix 
  • 封装TSOP 
  • 批号20+ 
  • 百分百原装正品 真实公司现货库存 本公司只做原装 可开13%增值税发票,支持样品,欢迎来电咨询!
  • QQ:1437347957QQ:1437347957 复制
    QQ:1205045963QQ:1205045963 复制
  • 0755-82343089 QQ:1437347957QQ:1205045963
  • HY29F080T-90I图
  • 深圳市诚达吉电子有限公司

     该会员已使用本站2年以上
  • HY29F080T-90I
  • 数量6994 
  • 厂家HY 
  • 封装TSOP48 
  • 批号2024+ 
  • 原装正品 一手现货 假一赔百
  • QQ:2881951980QQ:2881951980 复制
  • 15873513267 QQ:2881951980

产品型号HY29F080T-12的Datasheet PDF文件预览

HY29F080  
8 Megabit (1M x 8), 5 Volt-only, Flash Memory  
KEY FEATURES  
n 5 Volt Read, Program, and Erase  
– Minimizes system-level power  
requirements  
n Sector Group Protection  
– Sectors may be locked in groups of two to  
prevent program or erase operations  
within that sector group  
n High Performance  
– Access times as fast as 70 ns  
n Low Power Consumption  
– 15 mA typical active read current  
– 30 mA typical program/erase current  
– 5 µA maximum CMOS standby current  
n Compatible with JEDEC Standards  
– Package, pinout and command-set  
compatible with the single-supply Flash  
device standard  
n Temporary Sector Unprotect  
– Allows changes in locked sectors  
(requires high voltage on RESET# pin)  
n Internal Erase Algorithm  
– Automatically erases a sector, any  
combination of sectors, or the entire chip  
n Internal Programming Algorithm  
– Automatically programs and verifies data  
at a specified address  
– Provides superior inadvertent write  
protection  
n Sector Erase Architecture  
– Sixteen equal size sectors of 64K bytes  
each  
n Fast Program and Erase Times  
– Byte programming time: 7 µs typical  
– Sector erase time: 1.0 sec typical  
– Chip erase time: 16 sec typical  
n Data# Polling and Toggle Status Bits  
– A command can erase any combination of  
sectors  
– Supports full chip erase  
– Provide software confirmation of  
completion of program or erase  
operations  
n Erase Suspend/Resume  
– Temporarily suspends a sector erase  
operation to allow data to be read from, or  
programmed into, any sector not being  
erased  
n Ready/Busy# Pin  
– Provides hardware confirmation of  
completion of program and erase  
operations  
n Minimum 100,000 Program/Erase Cycles  
n Space Efficient Packaging  
– Available in industry-standard 40-pin  
TSOP and 44-pin PSOP packages  
GENERAL DESCRIPTION  
LOGIC DIAGRAM  
The HY29F080 is an 8 Megabit, 5 volt-only CMOS  
Flash memory organized as 1,048,576 (1M) bytes  
of eight-bits each. The device is offered in indus-  
try-standard 44-pin PSOP and 40-pin TSOP pack-  
ages.  
20  
8
A[19:0]  
RESET#  
CE#  
DQ[7:0]  
RY/BY#  
The HY29F080 can be programmed and erased  
in-system with a single 5-volt VCC supply. Inter-  
nally generated and regulated voltages are pro-  
vided for program and erase operations, so that  
the device does not require a high voltage power  
supply to perform those functions. The device can  
also be programmed in standard EPROM pro-  
grammers. Access times as fast as 70ns over the  
full operating voltage range of 5.0 volts ± 10% are  
offered for timing compatibility with the zero wait  
state requirements of high speed microprocessors.  
OE#  
W E#  
Revision 6.1, May 2001  
HY29F080  
To eliminate bus contention, the HY29F080 has  
separate chip enable (CE#), write enable (WE#)  
and output enable (OE#) controls.  
the device has a Sector Group Protect function  
which hardware write protects selected sector  
groups. The sector group protect and unprotect  
features can be enabled in a PROM programmer.  
Temporary Sector Unprotect, which requires a high  
voltage, allows in-system erasure and code  
changes in previously protected sectors.  
The device is compatible with the JEDEC single  
power-supply Flash command set standard. Com-  
mands are written to the command register using  
standard microprocessor write timings, from where  
they are routed to an internal state-machine that  
controls the erase and programming circuits.  
Device programming is performed a byte at a time  
by executing the four-cycle Program Command.  
This initiates an internal algorithm that automati-  
cally times the program pulse widths and verifies  
proper cell margin.  
Erase Suspend enables the user to put erase on  
hold for any period of time to read data from, or  
program data to, any sector that is not selected  
for erasure. True background erase can thus be  
achieved. The device is fully erased when shipped  
from the factory.  
Addresses and data needed for the programming  
and erase operations are internally latched during  
write cycles, and the host system can detect  
completion of a program or erase operation by  
observing the RY/BY# pin, or by reading the DQ[7]  
(Data# Polling) and DQ[6] (toggle) status bits.  
Reading data from the device is similar to reading  
from SRAM or EPROM devices. Hardware data  
protection measures include a low VCC detector  
that automatically inhibits write operations during  
power transitions.  
The HY29F080s sector erase architecture allows  
any number of array sectors to be erased and re-  
programmed without affecting the data contents  
of other sectors. Device erasure is initiated by  
executing the Erase Command. This initiates an  
internal algorithm that automatically preprograms  
the array (if it is not already programmed) before  
executing the erase operation. During erase  
cycles, the device automatically times the erase  
pulse widths and verifies proper cell margin.  
To protect data in the device from accidental or  
unauthorized attempts to program or erase the  
device while it is in the system (e.g., by a virus),  
The host can place the device into the standby  
mode. Power consumption is greatly reduced in  
this mode.  
BLOCK DIAGRAM  
DQ[7:0]  
STATE  
CONTROL  
RY/BY#  
ERASE VOLTAGE  
GENERATOR AND  
SECTOR SWITCHES  
I/O BUFFERS  
DATA LATCH  
Y-GATING  
DQ[7:0]  
COMMAND  
REGISTER  
WE#  
I/O CONTROL  
CE#  
ELECTRONIC  
OE#  
ID  
PROGRAM  
VOLTAGE  
RESET#  
GENERATOR  
Y-DECODER  
X-DECODER  
VSS  
8 Mbit FLASH  
MEMORY  
ARRAY  
VC C  
VC C DETECTOR  
TIMER  
(16 x 512 Kbit  
Sectors)  
A[19:0]  
Rev. 6.1/May 01  
2
HY29F080  
PIN CONFIGURATIONS  
NC  
RESET#  
A11  
1
2
3
4
5
6
7
44  
43  
42  
41  
40  
39  
38  
V CC  
CE#  
A12  
A13  
A14  
A15  
A16  
A19  
A18  
A17  
A16  
A15  
A14  
A13  
1
2
3
4
5
6
7
40  
NC  
39  
38  
37  
36  
35  
34  
NC  
W E #  
OE#  
RY/BY#  
DQ7  
DQ6  
A10  
A9  
A8  
A7  
A6  
A5  
8
9
37  
36  
A17  
A18  
A12  
CE#  
8
9
33  
32  
DQ5  
DQ4  
A4  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
A19  
NC  
V CC  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
V CC  
V SS  
V SS  
DQ3  
DQ2  
DQ1  
DQ0  
A0  
Standard  
TSOP40  
NC  
NC  
RESET#  
A11  
A10  
A9  
A3  
NC  
A2  
NC  
A1  
W E #  
OE#  
RY/BY#  
DQ7  
DQ6  
DQ5  
A0  
A8  
DQ0  
DQ1  
DQ2  
DQ3  
A7  
A6  
A1  
A5  
A2  
A4  
A3  
V SS  
V SS  
21  
22  
24  
23  
DQ4  
V CC  
NC  
NC  
1
40  
39  
38  
37  
36  
35  
34  
A19  
A18  
A17  
A16  
A15  
A14  
A13  
2
3
4
5
6
7
W E #  
OE#  
RY/BY#  
DQ7  
DQ6  
DQ5  
DQ4  
8
9
33  
32  
A12  
CE#  
V CC  
V SS  
10  
11  
12  
13  
14  
15  
31  
30  
29  
28  
27  
26  
V CC  
NC  
Reverse  
TSOP40  
V SS  
RESET#  
A11  
DQ3  
DQ2  
DQ1  
A10  
A9  
DQ0  
A0  
16  
17  
18  
19  
20  
25  
24  
23  
22  
21  
A8  
A7  
A6  
A5  
A4  
A1  
A2  
A3  
Rev. 6.1/May 01  
3
HY29F080  
CONVENTIONS  
Unless otherwise noted, a positive logic (active  
High) convention is assumed throughout this docu-  
ment, whereby the presence at a pin of a higher,  
more positive voltage (nominally 5VDC) causes  
assertion of the signal. A #symbol following the  
signal name, e.g., RESET#, indicates that the sig-  
nal is asserted in a Low state (nominally 0 volts).  
Whenever a signal is separated into numbered  
bits, e.g., DQ[7], DQ[6], ..., DQ[0], the family of  
bits may also be shown collectively, e.g., as  
DQ[7:0].  
The designation 0xNNNN (N = 0, 1, 2, . . . , 9, A, .  
. . , E, F) indicates a number expressed in hexa-  
decimal notation. The designation 0bXXXX indi-  
cates a number expressed in binary notation (X =  
0, 1).  
SIGNAL DESCRIPTIONS  
Name  
Type  
Description  
Address, active High. These twenty inputs select one of 1,048,576 (1M) bytes  
within the array for read or write operations. A[19] is the MSB and A[0] is the  
LSB.  
A[19:0]  
Inputs  
Inputs/Outputs Data Bus, active High. These pins provide an 8-bit data path for read and write  
DQ[7:0]  
CE#  
Tri-state  
operations.  
Chip Enable, active Low. This input must be asserted to read data from or  
write data to the HY29F080. WhenHigh, the data bus is tri-stated and the device  
is placed in the Standby mode.  
Input  
Output Enable, active Low. This input must be asserted for read operations  
and negated for write operations. When High, data outputs from the device are  
disabled and the data bus pins are placed in the high impedance state.  
OE#  
WE#  
Input  
Input  
Write Enable, active Low. Controls writing of commands or command  
sequences in order to program data or erase sectors of the memory array. A  
write operation takes place when WE# is asserted while CE# is Low and OE#  
is High.  
Hardware Reset, active Low. Provides a hardware method of resetting the  
HY29F080 to the read array state. When the device is reset, it immediately  
terminates any operationinprogress. The data bus is tri-stated and all read/write  
commands are ignored while the input is asserted. While RESET# is asserted,  
the device will be in the Standby mode.  
RESET#  
RY/BY#  
Input  
Ready/Busy Status. Indicates whether a write or erase command is in  
progress or has been completed. RY/BY# is valid after the rising edge of the  
final WE# pulse of a command sequence. It remains Low while the device is  
actively programming data or erasing, and goes High when it is ready to read  
array data.  
Output  
Open Drain  
5-volt power supply.  
VCC  
VSS  
--  
--  
Power and signal ground.  
MEMORY ARRAY ORGANIZATION  
erasure. See Bus Operationsand Command  
Definitionssections of this document for additional  
information on these functions.  
The 1 MByte Flash memory array is organized into  
sixteen 64 KByte blocks called sectors (S0, S1, . .  
. , S15). A sector is the smallest unit that can be  
erased. Adjacent pairs of sectors (S0/S1, S2/S3,  
. . . , S14/S15) are designated as a sector group.  
A sector group is the smallest unit which can be  
protected to prevent accidental or unauthorized  
Table 1 defines the sector addresses, sector group  
addresses and corresponding address ranges for  
the HY29F080.  
Rev. 6.1/May 01  
4
HY29F080  
Table 1. HY29F080 Memory Array Organization  
Sector/Sector Group Address 1  
Sector  
Group  
Sector  
Address Range A[19:0]  
A[19]  
0
A[18]  
0
A[17]  
0
A[16]  
0
S0  
S1  
0x00000 - 0x0FFFF  
0x10000 - 0x1FFFF  
0x20000 - 0x2FFFF  
0x30000 - 0x3FFFF  
0x40000 - 0x4FFFF  
0x50000 - 0x5FFFF  
0x60000 - 0x6FFFF  
0x70000 - 0x7FFFF  
0x80000 - 0x8FFFF  
0x90000 - 0x9FFFF  
0xA0000 - 0xAFFFF  
0xB0000 - 0xBFFFF  
0xC0000 - 0xCFFFF  
0xD0000 - 0xDFFFF  
0xE0000 - 0xEFFFF  
0xF0000 - 0xFFFFF  
SG0  
SG1  
SG2  
SG3  
SG4  
SG5  
SG6  
SG7  
0
0
0
1
S2  
0
0
1
0
S3  
0
0
1
1
S4  
0
1
0
0
S5  
0
1
0
1
S6  
0
1
1
0
S7  
0
1
1
1
S8  
1
0
0
0
S9  
1
0
0
1
S10  
S11  
S12  
S13  
S14  
S15  
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
Notes:  
1. A[19:16] are the sector address. A[19:17] are the sector group address.  
BUS OPERATIONS  
Device bus operations are initiated through the  
internal command register, which consists of sets  
of latches that store the commands, along with  
the address and data information, if any, needed  
to execute the specific command. The command  
register itself does not occupy any addressable  
memory location. The contents of the command  
register serve as inputs to an internal state ma-  
chine whose outputs control the operation of the  
device. Table 2 lists the normal bus operations,  
the inputs and control levels they require, and the  
resulting outputs. Certain bus operations require  
a high voltage on one or more device pins. Those  
are described in Table 3.  
Table 2. HY29F080 Normal Bus Operations 1  
Operation  
CE#  
OE#  
L
WE#  
H
RESET#  
A[19:0]  
DQ[7:0]  
DOUT  
Read  
Write  
L
H
AIN  
AIN  
X
L
H
L
H
DIN  
Output Disable  
L
H
H
H
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
CE# TTL Standby  
H
X
X
H
VCC ± 0.3V  
L
X
CE# CMOS Standby  
Hardware Reset (TTL Standby)  
Hardware Reset (CMOS Standby)  
Notes:  
V
CC ± 0.3V  
X
X
X
X
X
X
X
X
X
X
VSS ± 0.5V  
X
1. L = VIL, H = VIH, X = Dont Care, DOUT = Data Out, DIN = Data In. See DC Characteristics for voltage levels.  
Rev. 6.1/May 01  
5
HY29F080  
Table 3. HY29F080 Bus Operations Requiring High Voltage1, 2  
RESET-  
Operation 3  
CE#  
L
OE# WE#  
A[19:17] A[9]  
A[6]  
X
A[1]  
X
A[0]  
X
DQ[7:0]  
#
Sector Group  
Protect  
VID  
VID  
X
X
H
SGA 4  
SGA 4  
VID  
VID  
X
X
Sector Group  
Unprotect  
VID  
H
X
X
X
Temporary  
Sector Group  
Unprotect  
X
X
X
VID  
X
X
X
X
X
X
Manufacturer  
Code  
L
L
L
L
H
H
H
H
X
X
VID  
VID  
L
L
L
L
L
Hynix = 0xAD  
HY29F080 =  
0xD5  
Device Code  
H
0x00 =  
Unprotected  
Sector Group  
Protection  
Verification  
L
L
H
H
SGA 4  
VID  
L
H
L
0x01 =  
Protected  
Notes:  
1. L = VIL, H = VIH, X = Dont Care. See DC Characteristics for voltage levels.  
2. Address bits not specified are Dont Care.  
3. See text for additional information.  
4. SGA = sector group address. See Table 1.  
Read Operation  
instead of array data. After completing a program-  
ming operation in the Erase Suspend mode, the  
system may once again read array data with the  
same exceptions noted above. After completing  
an internal program or internal erase algorithm,  
the HY29F080 automatically returns to the read  
array data mode.  
Data is read from the HY29F080 by using stan-  
dard microprocessor read cycles while placing the  
address of the byte to be read on the devices  
address inputs, A[19:0]. As shown in Table 2, the  
host system must drive the CE# and OE# inputs  
Low and drive WE# High for a valid read opera-  
tion to take place. The device outputs the speci-  
fied array data on DQ[7:0].  
The host must issue a hardware reset or the soft-  
ware reset command (see Command Definitions)  
to return a sector to the read array data mode if  
DQ[5] goes high during a program or erase cycle,  
or to return the device to the read array data mode  
while it is in the Electronic ID mode.  
The HY29F080 is automatically set for reading  
array data after device power-up and after a hard-  
ware reset to ensure that no spurious alteration of  
the memory content occurs during the power tran-  
sition. No command is necessary in this mode to  
obtain array data, and the device remains enabled  
for read accesses until the command register con-  
tents are altered.  
Write Operation  
Certain operations, including programming data  
and erasing sectors of memory, require the host  
to write a command or command sequence to the  
HY29F080. Writes to the device are performed  
by placing the byte address on the devices ad-  
dress inputs while the data to be written is input  
on DQ[7:0]. The host system must drive the CE#  
and WE# pins Low and drive OE# High for a valid  
write operation to take place. All addresses are  
This device features an Erase Suspend mode.  
While in this mode, the host may read the array  
data from any sector of memory that is not marked  
for erasure. If the host attempts to read from an  
address within an erase-suspended sector, or  
while the device is performing an erase or byte  
program operation, the device outputs status data  
Rev. 6.1/May 01  
6
HY29F080  
latched on the falling edge of WE# or CE#, which-  
ever happens later. All data is latched on the ris-  
ing edge of WE# or CE#, whichever happens first.  
the duration of the RESET# pulse. The device also  
resets the internal state machine to reading array  
data. If an operation was interrupted by the as-  
sertion of RESET#, it should be reinitiated once  
the device is ready to accept another command  
sequence to ensure data integrity.  
The Device Commandssection of this document  
provides details on the specific device commands  
implemented in the HY29F080.  
Current is reduced for the duration of the RESET#  
pulse as described in the Standby Operation sec-  
tion above.  
Output Disable Operation  
When the OE# input is at VIH, output data from the  
device is disabled and the data bus pins are placed  
in the high impedance state.  
If RESET# is asserted during a program or erase  
operation (RY/BY# pin is Low), the internal reset  
operation is completed within a time of tREADY (during  
Automatic Algorithms). The RY/BY# pin will go High  
during the tREADY interval, and the system can per-  
form a read or write operation after waiting for a mini-  
mum of tREADY or until tRH after the RESET# pin re-  
turns High, whichever is longer. If RESET# is as-  
serted when a program or erase operation is not  
executing (RY/BY# pin is High), the reset operation  
is completed within a time of tRP. In this case, the  
host can perform a read or write operation tRH after  
the RESET# pin returns High.  
Standby Operation  
When the system is not reading from or writing to  
the HY29F080, it can place the device in the  
Standby mode. In this mode, current consump-  
tion is greatly reduced, and the data bus outputs  
are placed in the high impedance state, indepen-  
dent of the OE# input. The Standby mode can  
invoked using two methods.  
The device enters the CE# CMOS Standby mode  
if the CE# and RESET# pins are both held at VCC  
± 0.5V. Note that this is a more restricted voltage  
range than VIH. If both CE# and RESET# are held  
High, but not within VCC ± 0.5V, the device will be  
in the CE# TTL Standby mode, but the standby  
current will be greater.  
The RESET# pin may be tied to the system reset  
signal. Thus, a system reset would also reset the  
device, enabling the system to read the boot-up  
firmware from the Flash memory.  
Sector Group Protect/Unprotect Operations  
The device enters the RESET# CMOS Standby  
mode when the RESET# pin is held at VSS ± 0.5V.  
If RESET# is held Low but not within VSS ± 0.5V,  
the HY29F080 will be in the RESET# TTL Standby  
mode, but the standby current will be greater. See  
Hardware Reset Operation section for additional  
information on the reset operation.  
Hardware sector group protection can be invoked  
to disable program and erase operations in any  
single sector group or combination of sector  
groups. This function is typically used to protect  
data in the device from unauthorized or acciden-  
tal attempts to program or erase the device while  
it is in the system (e.g., by a virus) and is imple-  
mented using programming equipment. Sector  
group unprotection re-enables the program and  
erase operations in previously protected sectors.  
The device requires standard access time (tCE) for  
read access when the device is in either of the  
standby modes, before it is ready to read data. If  
the device is deselected during erasure or pro-  
gramming, it continues to draw active current until  
the operation is completed.  
Table 1 identifies the eight sector groups and the  
address ranges that each covers. The device is  
shipped with all sector groups unprotected.  
Hardware Reset Operation  
The sector group protect/unprotect operations re-  
quire a high voltage (VID) on address pin A9 and  
the CE# and/or OE# control pins, as detailed in  
Table 3. When implementing these operations,  
note that VCC must be applied to the device before  
applying VID, and that VID should be removed be-  
fore removing VCC from the device.  
The RESET# pin provides a hardware method of  
resetting the device to reading array data. When  
the RESET# pin is driven Low for the minimum  
specified period, the device immediately termi-  
nates any operation in progress, tri-states the data  
bus pins, and ignores all read/write commands for  
Rev. 6.1/May 01  
7
HY29F080  
The flow chart in Figure 1 illustrates the proce-  
dure for protecting sector groups, and timing speci-  
fications and waveforms are shown in the specifi-  
cations section of this document. Verification of  
protection is accomplished as described in the  
Electronic ID Mode section and shown in the flow  
chart.  
the appropriate commands (see Device Com-  
mands section). Once VID is removed from RE-  
SET#, all the previously protected sectors are pro-  
tected again. Figure 3 illustrates the algorithm.  
Electronic ID Mode Operation  
The Electronic ID mode provides manufacturer and  
device identification and sector group protection  
verification through identifier codes output on  
DQ[7:0]. This mode is intended primarily for pro-  
gramming equipment to automatically match a  
device to be programmed with its corresponding  
programming algorithm. The Electronic ID infor-  
mation can also be obtained by the host through  
a command sequence, as described in the De-  
vice Commands section.  
The procedure for sector group unprotection is il-  
lustrated in the flow chart in Figure 2, and timing  
specifications and waveforms are given at the end  
of this document. Note that to unprotect any sec-  
tor group, all unprotected sector groups must first  
be protected prior to the first unprotect write cycle.  
Sectors can also be temporarily unprotected as  
described in the next section.  
Temporary Sector Group Unprotect Operation  
Operation in the Electronic ID mode requires VID  
on address pin A[9], with additional requirements  
for obtaining specific data items as listed in Table  
2:  
This feature allows temporary unprotection of pre-  
viously protected sectors to allow changing the  
data in-system. Temporary Sector Group Unpro-  
tect mode is activated by setting the RESET# pin  
to VID. While in this mode, formerly protected sec-  
tors can be programmed or erased by invoking  
n A read cycle at address 0xXXX00 retrieves the  
manufacturer code (Hynix = 0xAD).  
START  
Wait t WPP1  
APPLY V  
WE# = V  
CC  
IH  
A9 = V ID  
A[19:17] = Group to Protect  
OE# = CE# = A6 = A0 = V  
A1 = V IH  
Set TRYCNT = 1  
Increment TRYCNT  
IL  
Read Data  
NO  
Set A9 = OE# = V  
ID  
NO  
Data = 0x01?  
TRYCNT = 25?  
YES  
Set Address:  
A[19:17] = Group to Protect  
CE# = V  
IL  
YES  
RESET# = V  
IH  
Remove V  
from A9  
ID  
NO  
Protect Another  
Sector?  
WE# = V  
IL  
SECTOR PROTECT  
COMPLETE  
DEVICE FAILURE  
YES  
Figure 1. Sector Group Protect Procedure  
Rev. 6.1/May 01  
8
HY29F080  
START  
NOTE: All sectors must be  
previously protected.  
Increment TRYCNT  
Set Sector Group Address:  
A[19:17] = Group NGRP  
A0 = A6 = V  
A1 = V IH  
APPLY V  
IL  
CC  
Set: TRYCNT = 1  
Read Data  
NO  
Set: NGRP = 0  
YES  
NO  
Data = 0x00?  
TRYCNT = 1000?  
Set: A9 = CE# = OE# = V  
ID  
YES  
Set: RESET# = V  
IH  
YES  
WE# = V IL  
Wait t WPP2  
WE# = V IH  
NGRP = 7?  
Remove V  
from A9  
ID  
NO  
NGRP = NGRP + 1  
SECTOR UNPROTECT  
COMPLETE  
DEVICE FAILURE  
Set:  
A9 = V ID  
OE# = CE# = V  
IL  
Figure 2. Sector Group Unprotect Procedure  
n A read cycle at address 0xXXX01 returns the  
device code (HY29F080 = 0xD5).  
START  
n A read cycle containing a sector group address  
(Table 1) in A[19:17] and the address 0x02 in  
A[7:0] returns 0x01 if that sector is protected,  
or 0x00 if it is unprotected.  
RESET# = VID  
(All protected sector groups  
become unprotected)  
Perform Program or Erase  
Operations  
RESET# = VIH  
(All previously protected  
sector groups return to  
protected state)  
TEMPORARY SECTOR  
UNPROTECT COMPLETE  
Figure 3. Temporary Sector Group Unprotect  
Rev. 6.1/May 01  
9
HY29F080  
DEVICE COMMANDS  
Note: When in the Electronic ID bus operation mode,  
the device returns to the Read mode when VID is re-  
moved from the A[9] pin. The Read/Reset command is  
not required in this case.  
Device operations are initiated by writing desig-  
nated address and data command sequences into  
the device. A command sequence is composed  
of one, two or three of the following sub-segments:  
an unlock cycle, a command cycle and a data  
cycle. Table 4 summarizes the composition of the  
valid command sequences implemented in the  
HY29F080, and these sequences are fully de-  
scribed in Table 5 and in the sections that follow.  
n If DQ[5] (Exceeded Time Limit) goes High dur-  
ing a program or erase operation, writing the  
reset command returns the sectors to the Read  
mode (or to the Erase Suspend mode if the  
device was in Erase Suspend).  
Writing incorrect address and data values or writ-  
ing them in the improper sequence resets the  
HY29F080 to the Read mode.  
The Read/Reset command may also be used to  
abort certain command sequences:  
n In a Sector Erase or Chip Erase command se-  
quence, the Read/Reset command may be  
written at any time before erasing actually be-  
gins, including, for the Sector Erase command,  
between the cycles that specify the sectors to  
be erased (see Sector Erase command de-  
scription). This aborts the command and re-  
sets the device to the Read mode. Once era-  
sure begins, however, the device ignores Read/  
Reset commands until the operation is com-  
plete.  
Table 4. Composition of Command Sequences  
Number of Bus Cycles  
Command  
Sequence  
Unlock Command  
Data  
Read/Reset 1  
Read/Reset 2  
Byte Program  
Chip Erase  
0
2
2
4
4
0
0
2
1
1
1
1
1
1
1
1
Note 1  
Note 1  
1
1
Sector Erase  
Erase Suspend  
Erase Resume  
Electronic ID  
1 (Note 2)  
n In a Program command sequence, the Read/  
Reset command may be written between the  
sequence cycles before programming actually  
begins. This aborts the command and resets  
the device to the Read mode, or to the Erase  
Suspend mode if the Program command se-  
quence is written while the device is in the  
Erase Suspend mode. Once programming  
begins, however, the device ignores Read/Re-  
set commands until the operation is complete.  
0
0
Note 3  
Notes:  
1. Any number of Flash array read cycles are permitted.  
2. Additional data cycles may follow. See text.  
3. Any number of Electronic ID read cycles are permitted.  
Read/Reset 1, 2 Commands  
n The Read/Reset command may be written be-  
tween the cycles in an Electronic ID command  
sequence to abort that command. As described  
above, once in the Electronic ID mode, the  
Read/ Reset command must be written to re-  
turn to the Read mode.  
The HY29F080 automatically enters the Read  
mode after device power-up, after the RESET#  
input is asserted and upon the completion of cer-  
tain commands. Read/Reset commands are not  
required to retrieve data in these cases.  
A Read/Reset command must be issued in order  
to read array data in the following cases:  
Byte Program Command  
The host processor programs the device a byte at  
a time by issuing the Program command sequence  
shown in Table 5. The sequence begins by writ-  
ing two unlock cycles, followed by the Program  
setup command and, lastly, a data cycle specify-  
ing the program address and data. This initiates  
the Automatic Programming algorithm, which pro-  
vides internally generated program pulses and  
n If the device is in the Electronic ID mode, a  
Read/ Reset command must be written to re-  
turn to the Read mode. If the device was in the  
Erase Suspend mode when the device entered  
the Electronic ID mode, writing the Read/Re-  
set command returns the device to the Erase  
Suspend mode.  
Rev. 6.1/May 01  
10  
HY29F080  
Rev. 6.1/May 01  
11  
HY29F080  
verifies the programmed cell margin. The host is  
not required to provide further controls or timings  
during this operation. When the Automatic Pro-  
gramming algorithm is complete, the device re-  
turns to the Read mode. Several methods are  
provided to allow the host to determine the status  
of the programming operation, as described in the  
Write Operation Status section.  
Chip Erase Command  
The Chip Erase command sequence consists of  
two unlock cycles, followed by the erase com-  
mand, two additional unlock cycles and then the  
chip erase data cycle. During chip erase, all sec-  
tors of the device are erased except protected  
sector groups. The command sequence starts the  
Automatic Erase algorithm, which preprograms  
and verifies the entire memory, except for pro-  
tected sector groups, for an all zero data pattern  
prior to electrical erase. The device then provides  
the required number of internally generated erase  
pulses and verifies cell erasure within the proper  
cell margins. The host system is not required to  
provide any controls or timings during these op-  
erations.  
Commands written to the device during execution  
of the Automatic Programming algorithm are ig-  
nored. Note that a hardware reset immediately  
terminates the programming operation. To en-  
sure data integrity, the aborted program command  
sequence should be reinitiated once the reset  
operation is complete.  
Programming is allowed in any sequence. Only  
erase operations can convert a stored 0to a 1.  
Thus, a bit cannot be programmed from a 0back  
to a 1. Attempting to do so will set DQ[5] to 1,  
and the Data# Polling algorithm will indicate that  
the operation was not successful. A Read/Reset  
command or a hardware reset is required to exit  
this state, and a succeeding read will show that  
the data is still 0.  
Commands written to the device during execution  
of the Automatic Erase algorithm are ignored. Note  
that a hardware reset immediately terminates the  
erase operation. To ensure data integrity, the  
aborted chip erase command sequence should be  
reissued once the reset operation is complete.  
When the Automatic Erase algorithm is finished,  
the device returns to the Read mode. Several  
methods are provided to allow the host to deter-  
mine the status of the erase operation, as de-  
scribed in the Write Operation Status section.  
Figure 4 illustrates the procedure for the Program  
operation.  
Figure 5 illustrates the Chip Erase procedure.  
START  
START  
Issue PROGRAM  
Command Sequence:  
Last cycle contains  
program Address/Data  
Issue CHIP ERASE  
Command Sequence  
Check Programming Status  
DQ[5] Error Exit  
(See Write Operation Status  
Check Erase Status  
DQ[5] Error Exit  
Section)  
(See Write Operation Status  
Section)  
Normal Exit  
Normal Exit  
NO  
GO TO  
CHIP ERASE COMPLETE  
Last Byte Done?  
ERROR RECOVERY  
YES  
Figure 5. Chip Erase Procedure  
Sector Erase Command  
PROGRAMMING  
COMPLETE  
GO TO  
ERROR RECOVERY  
The Sector Erase command sequence consists  
of two unlock cycles, followed by the erase com-  
mand, two additional unlock cycles and then the  
sector erase data cycle, which specifies which  
Figure 4. Programming Procedure  
Rev. 6.1/May 01  
12  
HY29F080  
sector is to be erased. As described later in this  
section, multiple sectors can be specified for era-  
sure with a single command sequence. During  
sector erase, all specified sectors are erased se-  
quentially. The data in sectors not specified for  
erasure, as well as the data in any sectors speci-  
fied for erasure but located within protected sec-  
tor groups, is not affected by the sector erase op-  
eration.  
least one selected sector is not protected, the  
erase operation erases the unprotected sectors,  
and ignores the command for the selected sec-  
tors that are protected.  
The system can monitor DQ[3] to determine if the  
50 µs sector erase time-out has expired, as de-  
scribed in the Write Operation Status section. If  
the time between additional sector erase data  
cycles can be insured to be less than the time-  
out, the system need not monitor DQ[3].  
The Sector Erase command sequence starts the  
Automatic Erase algorithm, which preprograms  
and verifies the specified unprotected sectors for  
an all zero data pattern prior to electrical erase.  
The device then provides the required number of  
internally generated erase pulses and verifies cell  
erasure within the proper cell margins. The host  
system is not required to provide any controls or  
timings during these operations.  
Any command other than Sector Erase or Erase  
Suspend during the time-out period resets the  
device to reading array data. The system must  
then rewrite the command sequence, including any  
additional sector erase data cycles. Once the  
sector erase operation itself has begun, only the  
Erase Suspend command is valid. All other com-  
mands are ignored.  
After the sector erase data cycle (the sixth bus  
cycle) of the command sequence is issued, a sec-  
tor erase time-out of 50 µs (typical), measured from  
the rising edge of the final WE# pulse in that bus  
cycle, begins. During this time, an additional sec-  
tor erase data cycle, specifying the sector address  
of another sector to be erased, may be written  
into an internal sector erase buffer. This buffer  
may be loaded in any sequence, and the number  
of sectors specified may be from one sector to all  
sectors. The only restriction is that the time be-  
tween these additional data cycles must be less  
than 50 µs, otherwise erasure may begin before  
the last data cycle is accepted. To ensure that all  
data cycles are accepted, it is recommended that  
host processor interrupts be disabled during the  
time that the additional cycles are being issued  
and then be re-enabled afterwards.  
As for the Chip Erase command, note that a hard-  
ware reset immediately terminates the erase op-  
eration. To ensure data integrity, the aborted Sec-  
tor Erase command sequence should be reissued  
once the reset operation is complete.  
When the Automatic Erase algorithm terminates,  
the device returns to the Read mode. Several  
methods are provided to allow the host to deter-  
mine the status of the erase operation, as de-  
scribed in the Write Operation Status section.  
Figure 6 illustrates the Sector Erase procedure.  
Erase Suspend/Erase Resume Commands  
The Erase Suspend command allows the system  
to interrupt a sector erase operation to read data  
from, or program data in, any sector not being  
erased. The command causes the erase opera-  
tion to be suspended in all sectors selected for  
erasure. This command is valid only during the  
sector erase operation, including during the 50 µs  
time-out period at the end of the initial command  
sequence and any subsequent sector erase data  
cycles, and is ignored if it is issued during chip  
erase or programming operations.  
Note: The device is capable of accepting three ways  
of invoking Erase Commands for additional sectors  
during the time-out window. The preferred method,  
described above, is the sector erase data cycle after  
the initial six bus cycle command sequence. How-  
ever, the device also accepts the following methods  
of specifying additional sectors during the sector  
erase time-out:  
n Repeat the entire six-cycle command sequence, speci-  
fying the additional sector in the sixth cycle.  
n Repeat the last three cycles of the six-cycle command  
sequence, specifying the additional sector in the third  
cycle.  
The HY29F080 requires a maximum of 15 µs to  
suspend the erase operation if the Erase Suspend  
command is issued during active sector erasure.  
However, if the command is written during the time-  
out, the time-out is terminated and the erase op-  
eration is suspended immediately. Any sub-  
sequent attempts to specify additional sectors for  
If all sectors scheduled for erasing are within pro-  
tected sector groups, the device returns to read-  
ing array data after approximately 100 µs. If at  
Rev. 6.1/May 01  
13  
HY29F080  
START  
Check Erase Status  
(See Write Operation Status  
Section)  
DQ[5] Error Exit  
Normal Exit  
Write First Five Cycles of  
SECTOR ERASE  
Command Sequence  
GO TO  
ERROR RECOVERY  
ERASE COMPLETE  
Setup First (or Next) Sector  
Address for Erase Operation  
Write Last Cycle (SA/0x30)  
of SECTOR ERASE  
Command Sequence  
Sectors which require erasure  
but which were not specified in  
this erase cycle must be erased  
later using a new command  
sequence  
NO  
Sector Erase  
Time-out (DQ[3])  
Expired?  
Erase An  
Additional Sector?  
YES  
YES  
NO  
Figure 6. Sector Erase Procedure  
erasure by writing the sector erase data cycle (SA/  
0x30) will be interpreted as the Erase Resume  
command (XXX/0x30), which will cause the Auto-  
matic Erase algorithm to begin its operation. Note  
that any other command during the time-out will  
reset the device to the Read mode.  
the Resume command are ignored. Another Erase  
Suspend command can be written after the de-  
vice has resumed erasing.  
The host may also write the Electronic ID com-  
mand sequence when the device is in the Erase  
Suspend mode. The device allows reading Elec-  
tronic ID codes even if the addresses used for the  
ID read cycles are within erasing sectors, since  
the codes are not stored in the memory array.  
When the device exits the Electronic ID mode, the  
device reverts to the Erase Suspend mode, and  
is ready for another valid operation. See Electronic  
ID section for more information.  
Once the erase operation has been suspended,  
the system can read array data from or program  
data to any sector not selected for erasure. Nor-  
mal read and write timings and command defini-  
tions apply. Reading at any address within erase-  
suspended sectors produces status data on  
DQ[7:0]. The host can use DQ[7], or DQ[6] and  
DQ[2] together, to determine if a sector is actively  
erasing or is erase-suspended. See Write Op-  
eration Statusfor information on these status bits.  
Electronic ID Command  
The Electronic ID operation intended for use in  
programming equipment has been described pre-  
viously. The host processor can also be obtain  
the same data by using the Electronic ID com-  
mand sequence shown in Table 5. This method  
does not require VID on any pin. The Electronic ID  
command sequence may be invoked while the  
device is in the Read mode or the Erase Suspend  
mode, but is invalid while the device is actively  
programming or erasing.  
After an erase-suspended program operation is  
complete, the host can initiate another program-  
ming operation (or read operation) within non-sus-  
pended sectors. The host can determine the sta-  
tus of a program operation during the erase-sus-  
pended state just as in the standard programming  
operation.  
The system must write the Erase Resume com-  
mand to exit the Erase Suspend mode and con-  
tinue the sector erase operation. Further writes of  
Rev. 6.1/May 01  
14  
HY29F080  
The Electronic ID command sequence is initiated  
by writing two unlock cycles, followed by the Elec-  
tronic ID command. The device then enters the  
Electronic ID mode, and:  
mand sequence. Thus, for example, the host may  
determine the protection status for all sector  
groups by doing successive reads at address 0x02  
while changing the SGA in A[19:17] for each cycle.  
n A read cycle at address 0xXXX00 retrieves the  
The system must write the Reset command to exit  
the Electronic ID mode and return to the Read  
mode, or to the Erase Suspend mode if the de-  
vice was in that mode when the command se-  
quence was issued.  
manufacturer code (Hynix = 0xAD).  
n A read cycle at address 0xXXX01 returns the  
device code (29F080 = 0xD5).  
n A read cycle containing a sector group address  
(SGA) in A[19:17] and the address 0x02 in  
A[7:0] returns 0x01 if that sector is protected,  
or 0x00 if it is unprotected.  
The host system may read at any address any  
number of times, without initiating another com-  
WRITE OPERATION STATUS  
The HY29F080 provides a number of facilities to  
determine the status of a program or erase op-  
eration. These are the RY/BY# (Ready/Busy#)  
pin and certain bits of a status word which can be  
read from the device during the programming and  
erase operations. Table 6 summarizes the status  
indications and further detail is provided in the  
subsections which follow.  
Table 6. Write and Erase Operation Status Summary  
1
1
Mode  
Operation  
Programming in progress  
Programming completed  
Erase in progress  
DQ[7]  
DQ[7]#  
Data  
0
DQ[6]  
Toggle  
Data 4  
Toggle  
Data 4  
DQ[5]  
0/1 2  
DQ[3]  
N/A  
DQ[2]  
N/A  
RY/BY#  
0
1
0
1
Data  
0/1 2  
Data  
1 3  
Data  
Normal  
Toggle  
Data 4  
Erase completed  
1
Data  
Data  
Read within erase suspended  
sector  
1
No toggle  
Data  
0
N/A  
Toggle  
Data  
1
1
Read within non-erase  
suspended sector  
Erase  
Data  
Data  
Data  
Suspend  
Programming in progress 5  
Programming completed 5  
DQ[7]#  
Data  
Toggle  
Data 4  
0/1 2  
N/A  
N/A  
0
1
Data  
Data  
Data  
Notes:  
1. A valid address is required when reading status information. See text for additional information.  
2. DQ[5] status switches to a 1when a program or erase operation exceeds the maximum timing limit.  
3. A 1during sector erase indicates that the 50 µs timeout has expired and active erasure is in progress. DQ[3] is not  
applicable to the chip erase operation.  
4. Equivalent to No Togglebecause data is obtained in this state.  
5. Programming can be done only in a non-suspended sector (a sector not marked for erasure).  
If the output is Low (busy), the device is actively  
erasing or programming, including programming  
while in the Erase Suspend mode. If the output is  
High (ready), the device has completed the op-  
eration and is ready to read array data in the nor-  
mal or Erase Suspend modes, or it is in the standby  
mode.  
RY/BY# - Ready/Busy#  
RY/BY# is an open-drain output pin that indicates  
whether a programming or erase Automatic Algo-  
rithm is in progress or has completed. A pull-up  
resistor to VCC is required for proper operation. RY/  
BY# is valid after the rising edge of the final WE#  
pulse in the corresponding command sequence.  
Rev. 6.1/May 01  
15  
HY29F080  
DQ[7] - Data# Polling  
START  
The Data# (Data Bar) Polling bit, DQ[7], indicates  
to the host system whether an Automatic Algo-  
rithm is in progress or completed, or whether the  
device is in Erase Suspend mode. Data# Polling  
is valid after the rising edge of the final WE# pulse  
in the Program or Erase command sequence.  
Read DQ[7:0]  
at Valid Address (Note 1)  
Test for DQ[7] = 1?  
for Erase Operation  
DQ[7] = Data?  
NO  
YES  
The system must do a read at the program ad-  
dress to obtain valid programming status informa-  
tion on this bit. While a programming operation is  
in progress, the device outputs the complement  
of the value programmed to DQ[7]. When the pro-  
gramming operation is complete, the device out-  
puts the value programmed to DQ[7]. If a pro-  
gram operation is attempted within a protected  
sector, Data# Polling on DQ[7] is active for ap-  
proximately 2 µs, then the device returns to read-  
ing array data.  
NO  
DQ[5] = 1?  
YES  
Read DQ[7:0]  
at Valid Address (Note 1)  
Test for DQ[7] = 1?  
for Erase Operation  
The host must read at an address within any non-  
protected sector scheduled for erasure to obtain  
valid erase status information on DQ[7]. During  
an erase operation, Data# Polling produces a 0”  
on DQ[7]. When the erase operation is complete,  
or if the device enters the Erase Suspend mode,  
Data# Polling produces a 1on DQ[7]. If all sec-  
tors selected for erasing are protected, Data#  
Polling on DQ[7] is active for approximately 100  
µs, then the device returns to reading array data.  
If at least one selected sector is not protected, the  
erase operation erases the unprotected sectors,  
and ignores the command for the selected sec-  
tors that are protected.  
DQ[7] = Data?  
(Note 2)  
YES  
NO  
PROGRAM/ERASE  
EXCEEDED TIME ERROR  
PROGRAM/ERASE  
COMPLETE  
Notes:  
1. During programming, the program address.  
During sector erase, an address within any non-protected sector  
scheduled for erasure.  
During chip erase, an address within any non-protected sector.  
2. Recheck DQ[7] since it may change asynchronously at the same time  
as DQ[5].  
Figure 7. Data# Polling Test Algorithm  
When the system detects that DQ[7] has changed  
from the complement to true data (or 0to 1for  
erase), it should do an additional read cycle to read  
valid data from DQ[7:0]. This is because DQ[7]  
may change asynchronously with respect to the  
other data bits while Output Enable (OE#) is as-  
serted low.  
erase time-out. The system may use either OE#  
or CE# to control the read cycles.  
Successive read cycles at any address during an  
Automatic Program algorithm operation (including  
programming while in Erase Suspend mode)  
cause DQ[6] to toggle. DQ[6] stops toggling when  
the operation is complete. If a program address  
falls within a protected sector, DQ[6] toggles for  
approximately 2 µs after the program command  
sequence is written, then returns to reading array  
data.  
Figure 7 illustrates the Data# Polling test algorithm.  
DQ[6] - Toggle Bit I  
Toggle Bit I on DQ[6] indicates whether an Auto-  
matic Program or Erase algorithm is in progress  
or complete, or whether the device has entered  
the Erase Suspend mode. Toggle Bit I may be  
read at any address, and is valid after the rising  
edge of the final WE# pulse in the program or erase  
command sequence, including during the sector  
While the Automatic Erase algorithm is operating,  
successive read cycles at any address cause  
DQ[6] to toggle. DQ[6] stops toggling when the  
erase operation is complete or when the device is  
placed in the Erase Suspend mode. The host may  
use DQ[2] to determine which sectors are erasing  
Rev. 6.1/May 01  
16  
HY29F080  
START  
DQ[5] = 1?  
YES  
Read DQ[7:0]  
at Valid Address (Note 1)  
NO  
Read DQ[7:0]  
Read DQ[7:0]  
Read DQ[7:0]  
at Valid Address (Note 1)  
Read DQ[7:0]  
at Valid Address (Note 1)  
YES  
NO  
DQ[6] Toggled?  
(Note 2)  
NO  
DQ[6] Toggled?  
DQ[2] Toggled?  
YES  
NO  
(Note 4)  
NO  
(Note 3)  
YES  
PROGRAM/ERASE  
COMPLETE  
PROGRAM/ERASE  
EXCEEDED TIME ERROR  
SECTOR BEING READ  
IS IN ERASE SUSPEND  
SECTOR BEING READ  
IS NOT IN ERASE SUSPEND  
Notes  
:
1. During programming, the program address.  
During sector erase, an address within any sector scheduled for erasure.  
2. Recheck DQ[6] since toggling may stop at the same time as DQ[5] changes from 0 to 1.  
3. Use this path if testing for Program/Erase status.  
4. Use this path to test whether sector is in Erase Suspend mode.  
Figure 8. Toggle Bit I and II Test Algorithm  
or erase-suspended (see below). After an Erase  
command sequence is written, if all sectors se-  
lected for erasing are protected, DQ[6] toggles for  
approximately 100 µs, then returns to reading ar-  
ray data. If at least one selected sector is not  
protected, the Automatic Erase algorithm erases  
the unprotected sectors, and ignores the selected  
sectors that are protected.  
Thus, both status bits are required for sector and  
mode information.  
Figure 8 illustrates the operation of Toggle Bits I  
and II.  
DQ[5] - Exceeded Timing Limits  
DQ[5] is set to a 1when the program or erase  
time has exceeded a specified internal pulse count  
limit. This is a failure condition that indicates that  
the program or erase cycle was not successfully  
completed. DQ[5] status is valid only while DQ[7]  
or DQ[6] indicate that an Automatic Algorithm is  
in progress.  
DQ[2] - Toggle Bit II  
Toggle Bit II, DQ[2], when used with DQ[6], indi-  
cates whether a particular sector is actively eras-  
ing or whether that sector is erase-suspended.  
Toggle Bit II is valid after the rising edge of the  
final WE# pulse in the command sequence. The  
device toggles DQ[2] with each OE# or CE# read  
cycle.  
The DQ[5] failure condition will also be signaled if  
the host tries to program a 1to a location that is  
previously programmed to 0, since only an erase  
operation can change a 0to a 1.  
DQ[2] toggles when the host reads at addresses  
within sectors that have been selected for erasure,  
but cannot distinguish whether the sector is ac-  
tively erasing or is erase-suspended. DQ[6], by  
comparison, indicates whether the device is ac-  
tively erasing or is in Erase Suspend, but cannot  
distinguish which sectors are selected for erasure.  
For both of these conditions, the host must issue  
a Read/Reset command to return the device to  
the Read mode.  
Rev. 6.1/May 01  
17  
HY29F080  
DQ[7] (Data# Polling) or DQ[6] (Toggle Bit I) to  
ensure that the device has accepted the command  
sequence, and then read DQ[3]. If DQ[3] is a 1,  
the internally controlled erase cycle has begun and  
all further sector erase data cycles or commands  
(other than Erase Suspend) are ignored until the  
erase operation is complete. If DQ[3] is a 0, the  
device will accept a sector erase data cycle to mark  
an additional sector for erasure. To ensure that  
the data cycles have been accepted, the system  
software should check the status of DQ[3] prior to  
and following each subsequent sector erase data  
cycle. If DQ[3] is high on the second status check,  
the last data cycle might not have been accepted.  
DQ[3] - Sector Erase Timer  
After writing a Sector Erase command sequence,  
the host may read DQ[3] to determine whether or  
not an erase operation has begun. When the  
sector erase time-out expires and the sector erase  
operation commences, DQ[3] switches from a 0’  
to a 1. Refer to the Sector Erase Command”  
section for additional information. Note that the  
sector erase timer does not apply to the Chip Erase  
command.  
After the initial Sector Erase command sequence  
is issued, the system should read the status on  
HARDWARE DATA PROTECTION  
The HY29F080 provides several methods of pro-  
tection to prevent accidental erasure or program-  
ming which might otherwise be caused by spuri-  
ous system level signals during VCC power-up and  
power-down transitions, or from system noise.  
These methods are described in the sections that  
follow.  
Write Pulse “Glitch” Protection  
Noise pulses of less than 5 ns (typical) on OE#,  
CE# or WE# do not initiate a write cycle.  
Logical Inhibit  
Write cycles are inhibited by asserting any one of  
the following conditions: OE# = VIL , CE# = VIH, or  
WE# = VIH. To initiate a write cycle, CE# and WE#  
must be a logical zero while OE# is a logical one.  
Command Sequences  
Commands that may alter array data require a  
sequence of cycles as described in Table 5. This  
provides data protection against inadvertent writes.  
Power-Up Write Inhibit  
If WE# = CE# = VIL and OE# = VIH during power  
up, the device does not accept commands on the  
rising edge of WE#. The internal state machine is  
automatically reset to the Read mode on power-  
up.  
Low VCC Write Inhibit  
To protect data during VCC power-up and power-  
down, the device does not accept write cycles  
when VCC is less than VLKO (typically 3.7 volts). The  
command register and all internal program/erase  
circuits are disabled, and the device resets to the  
Read mode. Writes are ignored until VCC is greater  
than VLKO . The system must provide the proper  
signals to the control pins to prevent unintentional  
Sector Group Protection  
Additional data protection is provided by the  
HY29F080s sector group protect feature, de-  
scribed previously, which can be used to protect  
sensitive areas of the Flash array from accidental  
or unauthorized attempts to alter the data.  
writes when VCC is greater than VLKO  
.
Rev. 6.1/May 01  
18  
HY29F080  
ABSOLUTE MAXIMUM RATINGS4  
Symbol  
Parameter  
Value  
Unit  
ºC  
TSTG  
TBIAS  
Storage Temperature  
Ambient Temperature with Power Applied  
-65 to +125  
-55 to +125  
ºC  
Voltage on Pin with Respect to VSS  
VCC1  
:
-2.0 to +7.0  
-2.0 to +13.5  
-2.0 to +7.0  
V
V
V
VIN2  
A[9], OE#, RESET# 2  
All Other Pins 1  
IOS  
Output Short Circuit Current 3  
200  
mA  
Notes:  
1. Minimum DC voltage on input or I/O pins is 0.5 V. During voltage transitions, input or I/O pins may undershoot VSS to  
-2.0V for periods of up to 20 ns. See Figure 9. Maximum DC voltage on input or I/O pins is VCC + 0.5 V. During voltage  
transitions, input or I/O pins may overshoot to VCC +2.0 V for periods up to 20 ns. See Figure 10.  
2. Minimum DC input voltage on pins A[9], OE#, and RESET# is -0.5 V. During voltage transitions, A[9], OE#, and RESET#  
may undershoot VSS to 2.0 V for periods of up to 20 ns. See Figure 9. Maximum DC input voltage on these pins is +12.5  
V which may overshoot to 13.5 V for periods up to 20 ns.  
3. No more than one output at a time may be shorted to VSS. Duration of the short circuit should be less than one second.  
4. Stresses above those listed under Absolute Maximum Ratingsmay cause permanent damage to the device. This is a  
stress rating only; functional operation of the device at these or any other conditions above those indicated in the  
operational sections of this data sheet is not implied. Exposure of the device to absolute maximum rating conditions for  
extended periods may affect device reliability.  
1
RECOMMENDED OPERATING CONDITIONS  
Symbol  
TA  
Parameter  
Ambient Operating Temperature  
Operating Supply Voltage  
Value  
0 to +70  
Unit  
ºC  
VCC  
+4.50 to +5.50  
V
Notes:  
1. Recommended Operating Conditions define those limits between which the functionality of the device is guaranteed.  
20 ns  
20 ns  
20 ns  
VCC + 2.0 V  
0.8 V  
- 0.5 V  
VCC + 0.5 V  
2.0 V  
- 2.0 V  
20 ns  
20 ns  
20 ns  
Figure 9. Maximum Undershoot Waveform  
Figure 10. Maximum Overshoot Waveform  
Rev. 6.1/May 01  
19  
HY29F080  
DC CHARACTERISTICS  
TTL/NMOS Compatible  
Parameter  
Description  
Test Setup  
Min  
Typ  
Max  
Unit  
VIN = VSS to VCC,  
ILI  
Input Load Current  
±1.0  
µA  
VCC = VCC Max  
VCC = VCC Max,  
A[9] = 12.5 V  
ILIT  
A[9] Input Load Current  
50  
µA  
µA  
VOUT = VSS to VCC,  
VCC = VCC Max  
ILO  
ICC1  
ICC2  
ICC3  
Output Leakage Current  
±1.0  
VCC Active Read Current 1  
VCC Active Write Current 2, 3  
CE# = VIL, OE# = VIH  
CE# = VIL, OE# = VIH  
25  
40  
40  
60  
mA  
mA  
VCC CE# Controlled  
TTL Standby Current  
VCC = VCC Max,  
CE# = RESET# = VIH  
0.4  
0.4  
1.0  
1.0  
mA  
mA  
VCC RESET# Controlled  
TTL Standby Current  
VCC = VCC Max,  
RESET# = VIL  
ICC4  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
-0.5  
2.0  
0.8  
V
V
VCC + 0.5  
Voltage for Electronic ID and  
Temporary Sector Unprotect  
VID  
VOL  
VOH  
V
CC = 5.0V  
11.5  
12.5  
0.45  
V
V
VCC = VCC Min,  
Output Low Voltage  
IOL = 12.0ma  
CC = VCC Min,  
IOH = -2.5 mA  
V
Output High Voltage  
2.4  
3.2  
V
V
VLKO  
Low VCC Lockout Voltage 3  
4.2  
Notes:  
1. Includes both the DC Operating Current and the frequency dependent component at 6 MHz. The read component of the  
CC current is typically less than 1 ma/MHz with OE# at VIL.  
I
2. ICC active while Automatic Erase or Automatic Program algorithm is in progress.  
3. Not 100% tested.  
Rev. 6.1/May 01  
20  
HY29F080  
DC CHARACTERISTICS  
CMOS Compatible  
Parameter  
Description  
Test Setup  
Min  
Typ  
Max  
Unit  
VIN = VSS to VCC,  
VCC = VCC Max  
ILI  
Input Load Current  
±1.0  
50  
µA  
VCC = VCC Max,  
A[9] = 12.5 V  
ILIT  
A[9] Input Load Current  
µA  
µA  
VOUT = VSS to VCC,  
VCC = VCC Max  
ILO  
ICC1  
ICC2  
ICC3  
Output Leakage Current  
±1.0  
VCC Active Read Current 1  
VCC Active Write Current 2, 3  
CE# = VIL, OE# = VIH  
CE# = VIL, OE# = VIH  
25  
30  
40  
40  
mA  
mA  
VCC CE# Controlled  
CMOS Standby Current  
VCC = VCC Max, CE# =  
RESET# = VCC 0.5V  
1
1
5
5
µA  
µA  
VCC RESET# Controlled  
CMOS Standby Current  
VCC = VCC Max,  
RESET# = VSS 0.5V  
ICC4  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
-0.5  
0.8  
V
V
0.7 x VCC  
VCC + 0.3  
Voltage for Electronic ID and  
Temporary Sector Unprotect  
VID  
VCC = 5.0V  
11.5  
12.5  
0.45  
V
V
V
VCC = VCC Min,  
IOL = 12.0ma  
VOL  
Output Low Voltage  
VCC = VCC Min,  
IOH = -2.5 mA  
0.85 x  
VCC  
VOH  
Output High Voltage  
VCC = VCC Min,  
IOH = -100 µA  
VCC - 0.4  
3.2  
V
V
VLKO  
Low VCC Lockout Voltage 3  
4.2  
Notes:  
1. Includes both the DC Operating Current and the frequency dependent component at 6 MHz. The read component of the  
CC current is typically less than 1 ma/MHz with OE# at VIL.  
I
2. ICC active while Automatic Erase or Automatic Program algorithm is in progress.  
3. Not 100% tested.  
KEY TO SWITCHING WAVEFORMS  
WAVEFORM  
INPUTS  
OUTPUTS  
Steady  
Changing from H to L  
Changing from L to H  
Don't Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Centerline is High Impedance State  
(High Z)  
Rev. 6.1/May 01  
21  
HY29F080  
TEST CONDITIONS  
+ 5V  
Table 7. Test Specifications  
- 70  
- 90  
- 12  
Test  
Condition  
Unit  
2.7  
KOhm  
Output Load  
1 TTL Gate  
100  
DEVICE  
UNDER  
TEST  
Output Load Capacitance (CL)  
Input Rise and Fall Times  
Input Signal Low Level  
Input Signal High Level  
pF  
ns  
V
All diodes  
are  
1N3064  
or  
equivalent  
20  
0.45  
6.2  
KOhm  
C L  
2.4  
V
Low Timing Measurement  
Signal Level  
0.8  
2.0  
V
V
High Timing Measurement  
Signal Level  
Figure 11. Test Setup  
2.4 V  
2.0 V  
2.0 V  
Measurement  
Levels  
Input  
Output  
0.8 V  
0.8 V  
0.45 V  
HY29F080-70, -90, -12 Versions  
Figure 12. Input Waveforms and Measurement Levels  
Rev. 6.1/May 01  
22  
HY29F080  
AC CHARACTERISTICS  
Read Operations  
Parameter  
Speed Option  
- 70 - 90 - 12  
Description  
Test Setup  
Unit  
JEDEC Std  
tAVAV  
tRC Read Cycle Time (Note 1)  
Min  
70  
90  
120  
ns  
ns  
CE# = VIL  
OE# = VIL  
tAVQV  
tACC Address to Output Delay  
Max  
70  
90  
120  
tELQV  
tEHQZ  
tGLQV  
tGHQZ  
tCE Chip Enable to Output Delay  
OE# = VIL  
Max  
Max  
Max  
Max  
Min  
70  
20  
30  
20  
90  
20  
35  
20  
0
120  
30  
ns  
ns  
ns  
ns  
ns  
tDF Chip Enable to Output High Z (Note 1)  
tOE Output Enable to Output Delay  
CE# = VIL  
50  
tDF Output Enable to Output High Z (Note 1)  
30  
Read  
Output Enable  
Hold Time (Note 1)  
tOEH  
Toggle and  
Data# Polling  
Min  
Min  
10  
0
ns  
ns  
Output Hold Time from Addresses, CE#  
or OE#, Whichever Occurs First (Note 1)  
tAXQX  
tOH  
Notes:  
1. Not 100% tested.  
2. See Figure 11 and Table 7 for test conditions.  
tRC  
Addresses  
CE#  
Addresses Stable  
tACC  
tOE  
OE#  
tOEH  
tDF  
WE#  
Outputs  
RESET#  
tCE  
tOH  
Output Valid  
RY/BY#  
0 V  
Figure 13. Read Operation Timings  
Rev. 6.1/May 01  
23  
HY29F080  
AC CHARACTERISTICS  
Hardware Reset (RESET#)  
Parameter  
Speed Option  
Description  
Test Setup  
Unit  
JEDEC Std  
- 70 - 90 - 12  
RESET# Pin Low (During Automatic  
tREADY Algorithms) to Read or Write (see Note  
1)  
Max  
Max  
20  
µs  
RESET# Pin Low (NOT During  
tREADY Automatic Algorithms) to Read or Write  
(see Note 1)  
500  
ns  
tRP RESET# Pulse Width  
Min  
Min  
500  
50  
ns  
ns  
RESET# High Time Before Read (see  
tRH  
Note 1)  
Notes:  
1. Not 100% tested.  
2. See Figure 11 and Table 7 for test conditions.  
RY/BY#  
0 V  
CE#, OE#  
RESET#  
tRH  
tRP  
tREADY  
Reset Timings NOT During Automatic Algorithms  
RY/BY#  
CE#, OE#  
RESET#  
tREADY  
tRP  
tRH  
Reset Timings During Automatic Algorithms  
Figure 14. RESET# Timings  
Rev. 6.1/May 01  
24  
HY29F080  
AC CHARACTERISTICS  
Program and Erase Operations  
Parameter  
Speed Option  
- 70 - 90 - 12  
Description  
Unit  
JEDEC Std  
tAVAV  
tAVWL  
tWLAX  
tDVWH  
tWHDX  
tGHWL  
tELWL  
tWHEH  
tWLWH  
tWHWL  
tWC Write Cycle Time (Note 1)  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Typ  
70  
90  
0
120  
ns  
ns  
tAS Address Setup Time  
tAH Address Hold Time  
tDS Data Setup Time  
45  
30  
45  
45  
0
50  
50  
ns  
ns  
tDH Data Hold Time  
ns  
tGHWL Read Recovery Time Before Write  
tCS CE# Setup Time  
0
ns  
0
ns  
tCH CE# Hold Time  
0
ns  
tWP Write Pulse Width  
tWPH Write Pulse Width High  
35  
45  
20  
7
50  
ns  
ns  
µs  
tWHWH1 tWHWH1 Byte Programming Operation (Notes 1, 2, 3)  
Chip Programming Operation (Notes 1, 2, 3, 5)  
tWHWH2 tWHWH2 Sector Erase Operation (Notes 1, 2, 4)  
tWHWH3 tWHWH3 Chip Erase Operation (Notes 1, 2, 4)  
Erase and Program Cycle Endurance  
Max  
Typ  
300  
7.2  
21.6  
1
µs  
sec  
sec  
sec  
sec  
sec  
sec  
cycles  
cycles  
µs  
Max  
Typ  
Max  
Typ  
8
16  
128  
Max  
Typ  
1,000,000  
Min  
Min  
Min  
Min  
100,000  
tVCS VCC Setup Time  
50  
0
tRB Recovery Time from RY/BY#  
tBUSY WE# to RY/BY# Delay  
ns  
40  
40  
50  
ns  
Notes:  
1. Not 100% tested.  
2. Typical program and erase times assume the following conditions: 25 °C, VCC = 5.0 volts, 100,000 cycles. In addition,  
programming typicals assume a checkerboard pattern. Maximum program and erase times are under worst case condi-  
tions of 90 °C, VCC = 4.5 volts, 100,000 cycles.  
3. Excludes system-level overhead, which is the time required to execute the four-bus-cycle sequence for the program  
command. See Table 5 for further information on command sequences.  
4. Excludes 0x00 programming prior to erasure. In the preprogramming step of the Automatic Erase algorithm, all bytes  
are programmed to 0x00 before erasure.  
5. The typical chip programming time is considerably less than the maximum chip programming time listed since most  
bytes program faster than the maximum programming times specified. The device sets DQ[5] = 1 only If the maximum  
byte program time specified is exceeded. See Write Operation Status section for additional information.  
Rev. 6.1/May 01  
25  
HY29F080  
AC CHARACTERISTICS  
Program Command Sequence (last two cycles)  
Read Status Data (last two cycles)  
tW C  
tAS  
tAH  
Addresses  
CE#  
0x555  
PA  
PA  
PA  
tG H W L  
OE#  
tCH  
tW P  
WE#  
tCS  
tW P H  
tW H W H 1  
Data  
0xA0  
PD  
tBUSY  
Status  
DOUT  
tRB  
tDS  
tDH  
RY/BY#  
VCC  
tVCS  
Notes:  
1. PA = Program Address, PD = Program Data, DOUT is the true data at the program address.  
2. VCC shown only to illustrate tVCS measurement references. It cannot occur as shown during a valid command sequence.  
Figure 15. Program Operation Timings  
Rev. 6.1/May 01  
26  
HY29F080  
AC CHARACTERISTICS  
Erase Command Sequence (last two cycles)  
Read Status Data (last two cycles)  
tW C  
tAS  
tAH  
Addresses  
CE#  
0x2AA  
SA  
VA  
VA  
0x555 for chip erase  
tG H W L  
OE#  
tCH  
tW P  
WE#  
tW H W H 2 or tW H W H 3  
Status  
tCS  
tW P H  
0x10 for  
chip erase  
Data  
0x55  
0x30  
tBUSY  
DOUT  
tRB  
tDS  
tDH  
RY/BY#  
VCC  
tVCS  
Notes:  
1. SA =Sector Address (for sector erase), VA = Valid Address for reading status data (see Write Operation Status section),  
DOUT is the true data at the read address.(0xFF after an erase operation).  
2. VCC shown only to illustrate tVCS measurement references. It cannot occur as shown during a valid command sequence.  
Figure 16. Sector/Chip Erase Operation Timings  
Rev. 6.1/May 01  
27  
HY29F080  
AC CHARACTERISTICS  
tRC  
VA  
Addresses  
VA  
VA  
tACC  
tCH  
tCE  
CE#  
tOE  
OE#  
WE#  
tDF  
tOEH  
tOH  
Complement  
Status Data  
Complement  
True  
Valid Data  
Valid Data  
DQ[7]  
DQ[6:0]  
RY/BY#  
Status Data  
True  
tBUSY  
Notes:  
1. VA = Valid Address for reading Data# Polling status data (see Write Operation Status section).  
2. Illustration shows first status cycle after command sequence, last status read cycle and array data read cycle.  
Figure 17. Data# Polling Timings (During Automatic Algorithms)  
tRC  
Addresses  
CE#  
VA  
VA  
VA  
VA  
tACC  
tCH  
tCE  
tOE  
OE#  
tDF  
tOEH  
WE#  
tOH  
Valid Status  
(first read)  
Valid Status  
(second read)  
Valid Status  
Valid Data  
DQ[6], [2]  
(stops toggling)  
tBUSY  
RY/BY#  
Notes:  
1. VA = Valid Address for reading Toggle Bits (DQ2, DQ6) status data (see Write Operation Status section).  
2. Illustration shows first two status read cycles after command sequence, last status read cycle and array data read cycle.  
Figure 18. Toggle Polling Timings (During Automatic Algorithms)  
Rev. 6.1/May 01  
28  
HY29F080  
AC CHARACTERISTICS  
Enter  
Automatic  
Erase  
Enter Erase  
Suspend  
Program  
Erase  
Suspend  
Erase  
Resume  
WE#  
Erase  
Erase  
Erase  
Erase  
Erase  
Erase  
Suspend  
Read  
Suspend  
Program  
Suspend  
Read  
Complete  
DQ[6]  
DQ[2]  
Notes:  
1. The system may use CE# or OE# to toggle DQ[2] and DQ[6]. DQ[2] toggles only when read at an address within an  
erase-suspended sector.  
Figure 19. DQ[2] and DQ[6] Operation  
Sector Group Protect and Unprotect, Temporary Sector Group Unprotect  
Parameter  
Speed Option  
- 70 - 90 - 12  
50  
Description  
Unit  
JEDEC Std  
tST Voltage Setup Time  
Min  
Min  
µs  
µs  
RESET# Setup Time for  
Temporary Sector Group Unprotect  
tRSP  
4
tCE Chip Enable to Output Delay  
tOE Output Enable to Output Delay  
Max  
Max  
70  
30  
90  
35  
120  
50  
ns  
ns  
Voltage Transition Time for  
tVIDR  
Min  
Min  
500  
4
ns  
µs  
Temporary Sector Group Unprotect (Note 1)  
Voltage Transition Time for  
tVLHT  
Sector Group Protect and Unprotect (Note 1)  
tWPP1 Write Pulse Width for Sector Group Protect  
tWPP2 Write Pulse Width for Sector Group Unprotect  
tOESP OE# Setup Time to WE# Active (Note 1)  
tCSP CE# Setup Time to WE# Active (Note 1)  
Min  
Min  
Min  
Min  
100  
100  
4
µs  
ms  
µs  
µs  
4
Notes:  
1. Not 100% tested.  
Rev. 6.1/May 01  
29  
HY29F080  
AC CHARACTERISTICS  
Group Protect Cycle  
Protect Verify Cycle  
A[19:17]  
A[0]  
SGA X  
SGA Y  
A[1]  
A[6]  
VID  
A[9]  
tVLHT  
tVLHT  
tVLHT  
VID  
OE#  
tOESP  
tVLHT  
tWPP1  
WE#  
CE#  
tOE  
Data  
0x01  
RESET#  
tST  
tST  
VCC  
tST  
Figure 20. Sector Group Protect Timings  
Rev. 6.1/May 01  
30  
HY29F080  
AC CHARACTERISTICS  
Group Unprotect Cycle  
Unprotect Verify Cycle  
A[19:17]  
A[0]  
SGA 0  
SGA 1  
A[1]  
A[6]  
VID  
A[9]  
tVLHT  
tVLHT  
VID  
OE#  
tOE  
tOESP  
VID  
CE#  
tCSP  
tWPP2  
tCE  
WE#  
Data  
0x00  
RESET#  
VCC  
tST  
Figure 21. Sector Group Unprotect Timings  
Rev. 6.1/May 01  
31  
HY29F080  
AC CHARACTERISTICS  
VID  
RESET#  
0 or 5V  
0 or 5V  
tVIDR  
tVIDR  
CE#  
WE#  
tRSP  
RY/BY#  
Figure 22. Temporary Sector Group Unprotect Timings  
Rev. 6.1/May 01  
32  
HY29F080  
AC CHARACTERISTICS  
Alternate CE# Controlled Erase/Program Operations  
Parameter  
Description  
JEDEC Std  
Speed Option  
- 70 - 90 - 12  
Unit  
tAVAV  
tAVWL  
tWLAX  
tDVWH  
tWHDX  
tGHEL  
tWLEL  
tEHWH  
tELEH  
tEHEL  
tWC Write Cycle Time (Note 1)  
tAS Address Setup Time  
tAH Address Hold Time  
tDS Data Setup Time  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Typ  
70  
90  
0
120  
ns  
ns  
45  
30  
45  
45  
0
50  
50  
ns  
ns  
tDH Data Hold Time  
ns  
tGHEL Read Recovery Time Before Write  
tWS WE# Setup Time  
0
ns  
0
ns  
tWH WE# Hold Time  
0
ns  
tCP CE# Pulse Width  
35  
45  
20  
7
50  
ns  
tCPH CE# Pulse Width High  
ns  
µs  
tWHWH1 tWHWH1 Byte Programming Operation (Notes 1, 2, 3)  
Chip Programming Operation (Notes 1, 2, 3, 5)  
tWHWH2 tWHWH2 Sector Erase Operation (Notes 1, 2, 4)  
tWHWH3 tWHWH3 Chip Erase Operation (Notes 1, 2, 4)  
Erase and Program Cycle Endurance  
Max  
Typ  
300  
7.2  
21.6  
1
µs  
sec  
sec  
sec  
sec  
sec  
sec  
cycles  
cycles  
Max  
Typ  
Max  
Typ  
8
16  
128  
Max  
Typ  
1,000,000  
100,000  
Min  
Notes:  
1. Not 100% tested.  
2. Typical program and erase times assume the following conditions: 25 °C, VCC = 5.0 volts, 100,000 cycles. In addition,  
programming typicals assume a checkerboard pattern. Maximum program and erase times are under worst case condi-  
tions of 90 °C, VCC = 4.5 volts, 100,000 cycles.  
3. Excludes system-level overhead, which is the time required to execute the four-bus-cycle sequence for the program  
command. See Table 5 for further information on command sequences.  
4. Excludes 0x00 programming prior to erasure. In the preprogramming step of the Automatic Erase algorithm, all bytes  
are programmed to 0x00 before erasure.  
5. The typical chip programming time is considerably less than the maximum chip programming time listed since most  
bytes program faster than the maximum programming times specified. The device sets DQ[5] = 1 only If the maximum  
byte program time specified is exceeded. See Write Operation Status section for additional information.  
Rev. 6.1/May 01  
33  
HY29F080  
AC CHARACTERISTICS  
PA for Program  
SA for Sector Erase  
0x555 for Chip Erase  
0x555 for Program  
0x2AA for Erase  
Addresses  
VA  
tW C  
tAS  
tAH  
WE#  
OE#  
CE#  
tGHEL  
tW H  
tCP  
tCPH  
tW H W H 1 or tW H W H 2 or tW H W H 3  
tW S  
tDS  
tDH  
tBUSY  
Data  
Status  
D OUT  
0xA0 for Program  
0x55 for Erase  
PD for Program  
0x30 for Sector Erase  
0x10 for Chip Erase  
RY/BY#  
tRH  
RESET#  
Notes:  
1. PA = program address, PD = program data, VA = Valid Address for reading program or erase status (see Write  
Operation Status section), DOUT = array data read at VA.  
2. Illustration shows the last two cycles of the program or erase command sequence and the last status read cycle.  
3. Word mode addressing shown.  
4. RESET# shown only to illustrate tRH measurement references. It cannot occur as shown during a valid  
command sequence.  
Figure 23. Alternate CE# Controlled Write Operation Timings  
Rev. 6.1/May 01  
34  
HY29F080  
Latchup Characteristics  
Description  
Minimum  
- 1.0  
Maximum  
VCC + 1.0  
100  
Unit  
V
Input voltage with respect to VSS on all I/O pins  
VCC Current  
- 100  
mA  
Notes:  
1. Includes all pins except VCC. Test conditions: VCC = 5.0V, one pin at a time.  
TSOP Pin Capacitance  
Symbol  
CIN  
Parameter  
Input Capacitance  
Test Setup  
VIN = 0  
Typ  
Max  
7.5  
12  
Unit  
pF  
6
8.5  
8
COUT  
CIN2  
Output Capacitance  
VOUT = 0  
VIN = 0  
pF  
Control Pin Capacitance  
9
pF  
Notes:  
1. Sampled, not 100% tested.  
2. Test conditions: TA = 25 ºC, f = 1.0 MHz.  
PSOP Pin Capacitance  
Symbol  
CIN  
Parameter  
Input Capacitance  
Test Setup  
VIN = 0  
Typ  
6
Max  
7.5  
12  
Unit  
pF  
COUT  
CIN2  
Output Capacitance  
VOUT = 0  
VIN = 0  
8.5  
7.5  
pF  
Control Pin Capacitance  
10  
pF  
Notes:  
1. Sampled, not 100% tested.  
2. Test conditions: TA = 25 ºC, f = 1.0 MHz.  
Data Retention  
Parameter  
Test Conditions  
Minimum  
Unit  
Years  
Years  
150 ºC  
125 ºC  
10  
20  
Minimum Pattern Data Retention Time  
Rev. 6.1/May 01  
35  
HY29F080  
PACKAGE DRAWINGS  
Physical Dimensions  
TSOP40 - 40-pin Thin Small Outline Package (measurements in millimeters)  
0.95  
1.05  
Pin 1 ID  
1
40  
9.90  
0.50 BSC  
10.10  
20  
21  
18.30  
18.50  
0.05  
0.15  
19.90  
20.10  
0.08  
0.20  
1.20  
MAX  
0.10  
0.20  
0o  
5o  
0.25 BSC  
0.50  
0.68  
PSOP44 - 44-pin Plastic Small Outline Package (measurements in millimeters)  
23  
44  
15.70  
16.30  
13.10  
13.50  
0.10  
0.21  
0O  
8O  
0.60  
1.00  
1
22  
1.27 NOM.  
28.00  
28.40  
2.17  
2.45  
2.80  
MAX.  
SEATING PLANE  
0.10  
0.35  
0.35  
0.50  
Rev. 6.1/May 01  
36  
HY29F080  
ORDERING INFORMATION  
Hynix products are available in several speeds, packages and operating temperature ranges. The  
ordering part number is formed by combining a number of fields, as indicated below. Refer to the Valid  
Combinationstable, which lists the configurations that are planned to be supported in volume. Please  
contact your local Hynix representative or distributor to confirm current availability of specific configura-  
tions and to determine if additional configurations have been released.  
HY29F080  
X
-
X
X
X
SPECIAL INSTRUCTIONS  
TEMPERATURE RANGE  
Blank = Commercial ( 0 to +70 °C)  
SPEED OPTION  
70 = 70 ns  
90 = 90 ns  
12 = 120 ns  
PACKAGE TYPE  
G = 44-Pin Plastic Small Outline Package (PSOP)  
T = 40-Pin Thin Small Outline Package (TSOP)  
R = 40-Pin Thin Small Outline Package (TSOP) with  
Reverse Pinout  
DEVICE NUMBER  
HY29F080 = 8 Megabit (1M x 8) CMOS 5-Volt Only Sector Erase  
Flash Memory  
VALID COMBINATIONS  
Package and Speed  
PSOP  
TSOP  
90 ns 120 ns 70 ns  
T-90 T-12 R-70  
Reverse TSOP  
90 ns 120 ns  
R-90 R-12  
Temperature  
70 ns  
90 ns 120 ns 70 ns  
Commercial  
G-70  
G-90  
G-12  
T-70  
Note:  
1. The complete part number is formed by appending the suffix shown in the table to the Device Number. For example, the  
part number for a 90 ns, Commercial temperature range device in the TSOP package is HY29F080T-90.  
Rev. 6.1/May 01  
37  
HY29F080  
Important Notice  
© 2001 by Hynix Semiconductor America. All rights reserved.  
No part of this document may be copied or reproduced in any  
form or by any means without the prior written consent of Hynix  
Semiconductor Inc. or Hynix Semiconductor America (collec-  
tively Hynix).  
tions of Sale only. Hynix makes no warranty, express, statu-  
tory, implied or by description, regarding the information set  
forth herein or regarding the freedom of the described devices  
from intellectual property infringement. Hynix makes no war-  
ranty of merchantability or fitness for any purpose.  
The information in this document is subject to change without  
notice. Hynix shall not be responsible for any errors that may  
appear in this document and makes no commitment to update  
or keep current the information contained in this document.  
Hynix advises its customers to obtain the latest version of the  
device specification to verify, before placing orders, that the  
information being relied upon by the customer is current.  
Hynixs products are not authorized for use as critical compo-  
nents in life support devices or systems unless a specific writ-  
ten agreement pertaining to such intended use is executed  
between the customer and Hynix prior to use. Life support  
devices or systems are those which are intended for surgical  
implantation into the body, or which sustain life whose failure to  
perform, when properly used in accordance with instructions  
for use provided in the labeling, can be reasonably expected to  
result in significant injury to the user.  
Devices sold by Hynix are covered by warranty and patent in-  
demnification provisions appearing in Hynix Terms and Condi-  
Revision Record  
Rev. Date  
Details  
Change to Hynix format.  
Removed 55 ns speed option and Industrial and Extended temperature options.  
6.1  
5/01  
Memory Sales and Marketing Division  
Hynix Semiconductor Inc.  
10 Fl., Hynix Youngdong Building  
89, Daechi-dong  
Flash Memory Business Unit  
Hynix Semiconductor America Inc.  
3101 North First Street  
San Jose, CA 95134  
USA  
Kangnam-gu  
Seoul, Korea  
Telephone: (408) 232-8800  
Fax: (408) 232-8805  
Telephone: +82-2-580-5000  
Fax: +82-2-3459-3990  
http://www.us.hynix.com  
http://www.hynix.com  
Rev. 6.1/May 01  
38  
配单直通车
HY29F080T-12产品参数
型号:HY29F080T-12
是否Rohs认证: 不符合
生命周期:Obsolete
零件包装代码:TSOP
包装说明:TSOP-40
针数:40
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.32.00.51
风险等级:5.52
最长访问时间:120 ns
其他特性:MINIMUM 100000 PROGRAM/ERASE CYCLES
命令用户界面:YES
数据轮询:YES
JESD-30 代码:R-PDSO-G40
JESD-609代码:e0
长度:18.4 mm
内存密度:8388608 bit
内存集成电路类型:FLASH
内存宽度:8
功能数量:1
部门数/规模:16
端子数量:40
字数:1048576 words
字数代码:1000000
工作模式:ASYNCHRONOUS
最高工作温度:70 °C
最低工作温度:
组织:1MX8
封装主体材料:PLASTIC/EPOXY
封装代码:TSOP1
封装等效代码:TSOP40(UNSPEC)
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE, THIN PROFILE
并行/串行:PARALLEL
峰值回流温度(摄氏度):NOT SPECIFIED
电源:5 V
编程电压:5 V
认证状态:Not Qualified
就绪/忙碌:YES
座面最大高度:1.2 mm
部门规模:64K
最大待机电流:0.000005 A
子类别:Flash Memories
最大压摆率:0.06 mA
最大供电电压 (Vsup):5.5 V
最小供电电压 (Vsup):4.5 V
标称供电电压 (Vsup):5 V
表面贴装:YES
技术:CMOS
温度等级:COMMERCIAL
端子面层:Tin/Lead (Sn/Pb)
端子形式:GULL WING
端子节距:0.5 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED
切换位:YES
类型:NOR TYPE
宽度:10 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!